Optimal. Leaf size=18 \[ \left (398-\frac {e^{5+x}}{4}+x-\log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.32, antiderivative size = 49, normalized size of antiderivative = 2.72, number of steps used = 15, number of rules used = 9, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.155, Rules used = {12, 14, 2194, 6686, 6742, 2199, 2178, 2176, 2554} \begin {gather*} -199 e^{x+5}+\frac {1}{16} e^{2 x+10}-\frac {1}{2} e^{x+5} x+(x-\log (x)+398)^2+\frac {1}{2} e^{x+5} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6686
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \frac {-6368+6352 x+e^{10+2 x} x+16 x^2+e^{5+x} \left (4-1596 x-4 x^2\right )+\left (16-16 x+4 e^{5+x} x\right ) \log (x)}{x} \, dx\\ &=\frac {1}{8} \int \left (e^{10+2 x}+\frac {16 (-1+x) (398+x-\log (x))}{x}-\frac {4 e^{5+x} \left (-1+399 x+x^2-x \log (x)\right )}{x}\right ) \, dx\\ &=\frac {1}{8} \int e^{10+2 x} \, dx-\frac {1}{2} \int \frac {e^{5+x} \left (-1+399 x+x^2-x \log (x)\right )}{x} \, dx+2 \int \frac {(-1+x) (398+x-\log (x))}{x} \, dx\\ &=\frac {1}{16} e^{10+2 x}+(398+x-\log (x))^2-\frac {1}{2} \int \left (\frac {e^{5+x} \left (-1+399 x+x^2\right )}{x}-e^{5+x} \log (x)\right ) \, dx\\ &=\frac {1}{16} e^{10+2 x}+(398+x-\log (x))^2-\frac {1}{2} \int \frac {e^{5+x} \left (-1+399 x+x^2\right )}{x} \, dx+\frac {1}{2} \int e^{5+x} \log (x) \, dx\\ &=\frac {1}{16} e^{10+2 x}+(398+x-\log (x))^2+\frac {1}{2} e^{5+x} \log (x)-\frac {1}{2} \int \frac {e^{5+x}}{x} \, dx-\frac {1}{2} \int \left (399 e^{5+x}-\frac {e^{5+x}}{x}+e^{5+x} x\right ) \, dx\\ &=\frac {1}{16} e^{10+2 x}-\frac {e^5 \text {Ei}(x)}{2}+(398+x-\log (x))^2+\frac {1}{2} e^{5+x} \log (x)+\frac {1}{2} \int \frac {e^{5+x}}{x} \, dx-\frac {1}{2} \int e^{5+x} x \, dx-\frac {399}{2} \int e^{5+x} \, dx\\ &=-\frac {399 e^{5+x}}{2}+\frac {1}{16} e^{10+2 x}-\frac {1}{2} e^{5+x} x+(398+x-\log (x))^2+\frac {1}{2} e^{5+x} \log (x)+\frac {1}{2} \int e^{5+x} \, dx\\ &=-199 e^{5+x}+\frac {1}{16} e^{10+2 x}-\frac {1}{2} e^{5+x} x+(398+x-\log (x))^2+\frac {1}{2} e^{5+x} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 23, normalized size = 1.28 \begin {gather*} \frac {1}{16} \left (-e^{5+x}+4 (398+x)-4 \log (x)\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.97, size = 43, normalized size = 2.39 \begin {gather*} x^{2} - \frac {1}{2} \, {\left (x + 398\right )} e^{\left (x + 5\right )} - \frac {1}{2} \, {\left (4 \, x - e^{\left (x + 5\right )} + 1592\right )} \log \relax (x) + \log \relax (x)^{2} + 796 \, x + \frac {1}{16} \, e^{\left (2 \, x + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 49, normalized size = 2.72 \begin {gather*} x^{2} - \frac {1}{2} \, x e^{\left (x + 5\right )} - 2 \, x \log \relax (x) + \frac {1}{2} \, e^{\left (x + 5\right )} \log \relax (x) + \log \relax (x)^{2} + 796 \, x + \frac {1}{16} \, e^{\left (2 \, x + 10\right )} - 199 \, e^{\left (x + 5\right )} - 796 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 50, normalized size = 2.78
method | result | size |
default | \(\frac {{\mathrm e}^{2 x +10}}{16}-\frac {x \,{\mathrm e}^{5+x}}{2}+\frac {\ln \relax (x ) {\mathrm e}^{5+x}}{2}-199 \,{\mathrm e}^{5+x}+x^{2}+796 x -796 \ln \relax (x )-2 x \ln \relax (x )+\ln \relax (x )^{2}\) | \(50\) |
norman | \(\frac {{\mathrm e}^{2 x +10}}{16}-\frac {x \,{\mathrm e}^{5+x}}{2}+\frac {\ln \relax (x ) {\mathrm e}^{5+x}}{2}-199 \,{\mathrm e}^{5+x}+x^{2}+796 x -796 \ln \relax (x )-2 x \ln \relax (x )+\ln \relax (x )^{2}\) | \(50\) |
risch | \(\ln \relax (x )^{2}+\frac {\left (-16 x +4 \,{\mathrm e}^{5+x}\right ) \ln \relax (x )}{8}+x^{2}+796 x -796 \ln \relax (x )+\frac {{\mathrm e}^{2 x +10}}{16}-\frac {x \,{\mathrm e}^{5+x}}{2}-199 \,{\mathrm e}^{5+x}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 55, normalized size = 3.06 \begin {gather*} x^{2} - \frac {1}{2} \, {\left (x e^{5} - e^{5}\right )} e^{x} - 2 \, x \log \relax (x) + \frac {1}{2} \, e^{\left (x + 5\right )} \log \relax (x) + \log \relax (x)^{2} + 796 \, x + \frac {1}{16} \, e^{\left (2 \, x + 10\right )} - \frac {399}{2} \, e^{\left (x + 5\right )} - 796 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 49, normalized size = 2.72 \begin {gather*} 796\,x-199\,{\mathrm {e}}^{x+5}+\frac {{\mathrm {e}}^{2\,x+10}}{16}-796\,\ln \relax (x)-\frac {x\,{\mathrm {e}}^{x+5}}{2}+{\ln \relax (x)}^2+\frac {{\mathrm {e}}^{x+5}\,\ln \relax (x)}{2}-2\,x\,\ln \relax (x)+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 48, normalized size = 2.67 \begin {gather*} x^{2} - 2 x \log {\relax (x )} + 796 x + \frac {\left (- 16 x + 16 \log {\relax (x )} - 6368\right ) e^{x + 5}}{32} + \frac {e^{2 x + 10}}{16} + \log {\relax (x )}^{2} - 796 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________