Optimal. Leaf size=23 \[ \frac {1}{4} \left (2+e^2-e^{e^{\frac {4+\log (4)}{x}}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 19, normalized size of antiderivative = 0.83, number of steps used = 4, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 6715, 2282, 2194} \begin {gather*} -\frac {1}{4} e^{4^{\frac {1}{x}} e^{4/x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rule 6715
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} (4+\log (4)) \int \frac {e^{e^{\frac {4+\log (4)}{x}}+\frac {4+\log (4)}{x}}}{x^2} \, dx\\ &=\frac {1}{4} (-4-\log (4)) \operatorname {Subst}\left (\int e^{e^{x (4+\log (4))}+x (4+\log (4))} \, dx,x,\frac {1}{x}\right )\\ &=-\left (\frac {1}{4} \operatorname {Subst}\left (\int e^x \, dx,x,e^{\frac {4+\log (4)}{x}}\right )\right )\\ &=-\frac {1}{4} e^{4^{\frac {1}{x}} e^{4/x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 16, normalized size = 0.70 \begin {gather*} -\frac {1}{4} e^{e^{\frac {4+\log (4)}{x}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 35, normalized size = 1.52 \begin {gather*} -\frac {1}{4} \, e^{\left (\frac {x e^{\left (\frac {2 \, {\left (\log \relax (2) + 2\right )}}{x}\right )} + 2 \, \log \relax (2) + 4}{x} - \frac {2 \, {\left (\log \relax (2) + 2\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 13, normalized size = 0.57 \begin {gather*} -\frac {1}{4} \, e^{\left (e^{\left (\frac {2 \, {\left (\log \relax (2) + 2\right )}}{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 15, normalized size = 0.65
method | result | size |
derivativedivides | \(-\frac {{\mathrm e}^{{\mathrm e}^{\frac {4+2 \ln \relax (2)}{x}}}}{4}\) | \(15\) |
norman | \(-\frac {{\mathrm e}^{{\mathrm e}^{\frac {4+2 \ln \relax (2)}{x}}}}{4}\) | \(15\) |
default | \(-\frac {\left (1+\frac {\ln \relax (2)}{2}\right ) {\mathrm e}^{{\mathrm e}^{\frac {4+2 \ln \relax (2)}{x}}}}{4+2 \ln \relax (2)}\) | \(29\) |
risch | \(-\frac {{\mathrm e}^{4^{\frac {1}{x}} {\mathrm e}^{\frac {4}{x}}}}{2 \left (\ln \relax (2)+2\right )}-\frac {{\mathrm e}^{4^{\frac {1}{x}} {\mathrm e}^{\frac {4}{x}}} \ln \relax (2)}{4 \left (\ln \relax (2)+2\right )}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 17, normalized size = 0.74 \begin {gather*} -\frac {1}{4} \, e^{\left (e^{\left (\frac {2 \, \log \relax (2)}{x} + \frac {4}{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 27, normalized size = 1.17 \begin {gather*} -\frac {{\mathrm {e}}^{2^{2/x}\,{\mathrm {e}}^{4/x}}\,\left (\ln \relax (4)+4\right )}{\ln \left (256\right )+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 14, normalized size = 0.61 \begin {gather*} - \frac {e^{e^{\frac {2 \log {\relax (2 )} + 4}{x}}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________