Optimal. Leaf size=24 \[ e^5 \log \left (\log \left (\frac {5+2 e^{-x/3}-x}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.06, antiderivative size = 25, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 4, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {6741, 12, 6688, 6684} \begin {gather*} e^5 \log \left (\log \left (\frac {2 e^{-x/3}}{x}+\frac {5}{x}-1\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6688
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^5 \left (-6-15 e^{x/3}-2 x\right )}{3 x \left (2+5 e^{x/3}-e^{x/3} x\right ) \log \left (\frac {e^{-x/3} \left (2+e^{x/3} (5-x)\right )}{x}\right )} \, dx\\ &=\frac {1}{3} e^5 \int \frac {-6-15 e^{x/3}-2 x}{x \left (2+5 e^{x/3}-e^{x/3} x\right ) \log \left (\frac {e^{-x/3} \left (2+e^{x/3} (5-x)\right )}{x}\right )} \, dx\\ &=\frac {1}{3} e^5 \int \frac {-6-15 e^{x/3}-2 x}{\left (2-e^{x/3} (-5+x)\right ) x \log \left (-1+\frac {5}{x}+\frac {2 e^{-x/3}}{x}\right )} \, dx\\ &=e^5 \log \left (\log \left (-1+\frac {5}{x}+\frac {2 e^{-x/3}}{x}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 24, normalized size = 1.00 \begin {gather*} e^5 \log \left (\log \left (\frac {5+2 e^{-x/3}-x}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 31, normalized size = 1.29 \begin {gather*} e^{5} \log \left (\log \left (-\frac {{\left ({\left (x - 5\right )} e^{\left (\frac {1}{3} \, x + 5\right )} - 2 \, e^{5}\right )} e^{\left (-\frac {1}{3} \, x - 5\right )}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 28, normalized size = 1.17 \begin {gather*} e^{5} \log \left (x - 3 \, \log \left (-x e^{\left (\frac {1}{3} \, x\right )} + 5 \, e^{\left (\frac {1}{3} \, x\right )} + 2\right ) + 3 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 28, normalized size = 1.17
method | result | size |
norman | \({\mathrm e}^{5} \ln \left (\ln \left (\frac {\left (\left (5-x \right ) {\mathrm e}^{\frac {x}{3}}+2\right ) {\mathrm e}^{-\frac {x}{3}}}{x}\right )\right )\) | \(28\) |
risch | \({\mathrm e}^{5} \ln \left (\ln \left ({\mathrm e}^{\frac {x}{3}}\right )-\frac {i \left (-2 \pi \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right ) {\mathrm e}^{-\frac {x}{3}}}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{3}} \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right ) {\mathrm e}^{-\frac {x}{3}}}{x}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right ) {\mathrm e}^{-\frac {x}{3}}}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{3}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{3}} \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right )\right )+\pi \,\mathrm {csgn}\left (i \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{3}} \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right )\right )^{2}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{3}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{3}} \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right )\right )^{2}-\pi \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{3}} \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right )\right )^{3}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{3}} \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right ) {\mathrm e}^{-\frac {x}{3}}}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right ) {\mathrm e}^{-\frac {x}{3}}}{x}\right )^{3}+2 i \ln \relax (x )-2 i \ln \left (x \,{\mathrm e}^{\frac {x}{3}}-5 \,{\mathrm e}^{\frac {x}{3}}-2\right )+2 \pi \right )}{2}\right )\) | \(400\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 24, normalized size = 1.00 \begin {gather*} e^{5} \log \left (-\frac {1}{3} \, x + \log \left (-{\left (x - 5\right )} e^{\left (\frac {1}{3} \, x\right )} + 2\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.61, size = 20, normalized size = 0.83 \begin {gather*} {\mathrm {e}}^5\,\ln \left (\ln \left (\frac {2\,{\mathrm {e}}^{-\frac {x}{3}}-x+5}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 22, normalized size = 0.92 \begin {gather*} e^{5} \log {\left (\log {\left (\frac {\left (\left (5 - x\right ) e^{\frac {x}{3}} + 2\right ) e^{- \frac {x}{3}}}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________