Optimal. Leaf size=21 \[ e^{\frac {5}{-2+4 \left (\frac {16}{3}+\frac {1}{x}\right )+x+x^2}} \]
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 22, normalized size of antiderivative = 1.05, number of steps used = 3, number of rules used = 3, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6688, 12, 6706} \begin {gather*} e^{\frac {15 x}{3 x^3+3 x^2+58 x+12}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {45 e^{\frac {15 x}{12+58 x+3 x^2+3 x^3}} \left (4-x^2-2 x^3\right )}{\left (12+58 x+3 x^2+3 x^3\right )^2} \, dx\\ &=45 \int \frac {e^{\frac {15 x}{12+58 x+3 x^2+3 x^3}} \left (4-x^2-2 x^3\right )}{\left (12+58 x+3 x^2+3 x^3\right )^2} \, dx\\ &=e^{\frac {15 x}{12+58 x+3 x^2+3 x^3}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 22, normalized size = 1.05 \begin {gather*} e^{\frac {15 x}{12+58 x+3 x^2+3 x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 21, normalized size = 1.00 \begin {gather*} e^{\left (\frac {15 \, x}{3 \, x^{3} + 3 \, x^{2} + 58 \, x + 12}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 21, normalized size = 1.00 \begin {gather*} e^{\left (\frac {15 \, x}{3 \, x^{3} + 3 \, x^{2} + 58 \, x + 12}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 1.05
method | result | size |
gosper | \({\mathrm e}^{\frac {15 x}{3 x^{3}+3 x^{2}+58 x +12}}\) | \(22\) |
risch | \({\mathrm e}^{\frac {15 x}{3 x^{3}+3 x^{2}+58 x +12}}\) | \(22\) |
norman | \(\frac {58 x \,{\mathrm e}^{\frac {15 x}{3 x^{3}+3 x^{2}+58 x +12}}+3 x^{2} {\mathrm e}^{\frac {15 x}{3 x^{3}+3 x^{2}+58 x +12}}+3 x^{3} {\mathrm e}^{\frac {15 x}{3 x^{3}+3 x^{2}+58 x +12}}+12 \,{\mathrm e}^{\frac {15 x}{3 x^{3}+3 x^{2}+58 x +12}}}{3 x^{3}+3 x^{2}+58 x +12}\) | \(119\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.80, size = 21, normalized size = 1.00 \begin {gather*} e^{\left (\frac {15 \, x}{3 \, x^{3} + 3 \, x^{2} + 58 \, x + 12}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.30, size = 21, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^{\frac {15\,x}{3\,x^3+3\,x^2+58\,x+12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 19, normalized size = 0.90 \begin {gather*} e^{\frac {15 x}{3 x^{3} + 3 x^{2} + 58 x + 12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________