Optimal. Leaf size=24 \[ -e^4-e^{4+e^{e^{25+x}}}+x-\log (5) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 15, normalized size of antiderivative = 0.62, number of steps used = 4, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2282, 2194} \begin {gather*} x-e^{e^{e^{x+25}}+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x-\int e^{29+e^{e^{25+x}}+e^{25+x}+x} \, dx\\ &=x-\operatorname {Subst}\left (\int e^{29+e^{e^{25} x}+e^{25} x} \, dx,x,e^x\right )\\ &=x-\frac {\operatorname {Subst}\left (\int e^{29+x} \, dx,x,e^{e^{25+x}}\right )}{e^{25}}\\ &=-e^{4+e^{e^{25+x}}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 15, normalized size = 0.62 \begin {gather*} -e^{4+e^{e^{25+x}}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 39, normalized size = 1.62 \begin {gather*} {\left (x e^{\left (x + e^{\left (x + 25\right )} + 25\right )} - e^{\left (x + e^{\left (x + 25\right )} + e^{\left (e^{\left (x + 25\right )}\right )} + 29\right )}\right )} e^{\left (-x - e^{\left (x + 25\right )} - 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -e^{\left (x + e^{\left (x + 25\right )} + e^{\left (e^{\left (x + 25\right )}\right )} + 29\right )} + 1\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 13, normalized size = 0.54
method | result | size |
default | \(x -{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x +25}}} {\mathrm e}^{4}\) | \(13\) |
norman | \(x -{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x +25}}} {\mathrm e}^{4}\) | \(13\) |
risch | \(x -{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x +25}}+4}\) | \(13\) |
derivativedivides | \(\ln \left ({\mathrm e}^{x +25}\right )-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x +25}}} {\mathrm e}^{4}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 12, normalized size = 0.50 \begin {gather*} x - e^{\left (e^{\left (e^{\left (x + 25\right )}\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 12, normalized size = 0.50 \begin {gather*} x-{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{x+25}}}\,{\mathrm {e}}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 12, normalized size = 0.50 \begin {gather*} x - e^{4} e^{e^{e^{x + 25}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________