Optimal. Leaf size=33 \[ \frac {4 e^{-x} x \left (e^2+x+\frac {3}{\log (x)}\right )}{3 \left (-2+x+\frac {3+x}{4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (48-48 x+\left (-48+48 x-48 x^2\right ) \log (x)+\left (-32 x+32 x^2-16 x^3+e^2 \left (-16+16 x-16 x^2\right )\right ) \log ^2(x)\right )}{\left (15-30 x+15 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (48-48 x+\left (-48+48 x-48 x^2\right ) \log (x)+\left (-32 x+32 x^2-16 x^3+e^2 \left (-16+16 x-16 x^2\right )\right ) \log ^2(x)\right )}{15 (-1+x)^2 \log ^2(x)} \, dx\\ &=\frac {1}{15} \int \frac {e^{-x} \left (48-48 x+\left (-48+48 x-48 x^2\right ) \log (x)+\left (-32 x+32 x^2-16 x^3+e^2 \left (-16+16 x-16 x^2\right )\right ) \log ^2(x)\right )}{(-1+x)^2 \log ^2(x)} \, dx\\ &=\frac {1}{15} \int \left (\frac {16 e^{-x} \left (-e^2-\left (2-e^2\right ) x+\left (2-e^2\right ) x^2-x^3\right )}{(1-x)^2}-\frac {48 e^{-x}}{(-1+x) \log ^2(x)}-\frac {48 e^{-x} \left (1-x+x^2\right )}{(-1+x)^2 \log (x)}\right ) \, dx\\ &=\frac {16}{15} \int \frac {e^{-x} \left (-e^2-\left (2-e^2\right ) x+\left (2-e^2\right ) x^2-x^3\right )}{(1-x)^2} \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x) \log ^2(x)} \, dx-\frac {16}{5} \int \frac {e^{-x} \left (1-x+x^2\right )}{(-1+x)^2 \log (x)} \, dx\\ &=\frac {16}{15} \int \left (-e^{2-x}+\frac {e^{-x} \left (-1-e^2\right )}{(-1+x)^2}+\frac {e^{-x} \left (-1-e^2\right )}{-1+x}-e^{-x} x\right ) \, dx-\frac {16}{5} \int \left (\frac {e^{-x}}{\log (x)}+\frac {e^{-x}}{(-1+x)^2 \log (x)}+\frac {e^{-x}}{(-1+x) \log (x)}\right ) \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x) \log ^2(x)} \, dx\\ &=-\left (\frac {16}{15} \int e^{2-x} \, dx\right )-\frac {16}{15} \int e^{-x} x \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x) \log ^2(x)} \, dx-\frac {16}{5} \int \frac {e^{-x}}{\log (x)} \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x)^2 \log (x)} \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x) \log (x)} \, dx-\frac {1}{15} \left (16 \left (1+e^2\right )\right ) \int \frac {e^{-x}}{(-1+x)^2} \, dx-\frac {1}{15} \left (16 \left (1+e^2\right )\right ) \int \frac {e^{-x}}{-1+x} \, dx\\ &=\frac {16 e^{2-x}}{15}-\frac {16 e^{-x} \left (1+e^2\right )}{15 (1-x)}+\frac {16 e^{-x} x}{15}-\frac {16 \left (1+e^2\right ) \text {Ei}(1-x)}{15 e}-\frac {16}{15} \int e^{-x} \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x) \log ^2(x)} \, dx-\frac {16}{5} \int \frac {e^{-x}}{\log (x)} \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x)^2 \log (x)} \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x) \log (x)} \, dx+\frac {1}{15} \left (16 \left (1+e^2\right )\right ) \int \frac {e^{-x}}{-1+x} \, dx\\ &=\frac {16 e^{2-x}}{15}+\frac {16 e^{-x}}{15}-\frac {16 e^{-x} \left (1+e^2\right )}{15 (1-x)}+\frac {16 e^{-x} x}{15}-\frac {16}{5} \int \frac {e^{-x}}{(-1+x) \log ^2(x)} \, dx-\frac {16}{5} \int \frac {e^{-x}}{\log (x)} \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x)^2 \log (x)} \, dx-\frac {16}{5} \int \frac {e^{-x}}{(-1+x) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 29, normalized size = 0.88 \begin {gather*} \frac {16 e^{-x} x \left (3+\left (e^2+x\right ) \log (x)\right )}{15 (-1+x) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 34, normalized size = 1.03 \begin {gather*} \frac {16 \, {\left ({\left (x^{2} + x e^{2}\right )} e^{\left (-x\right )} \log \relax (x) + 3 \, x e^{\left (-x\right )}\right )}}{15 \, {\left (x - 1\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 41, normalized size = 1.24 \begin {gather*} \frac {16 \, {\left (x^{2} e^{\left (-x\right )} \log \relax (x) + x e^{\left (-x + 2\right )} \log \relax (x) + 3 \, x e^{\left (-x\right )}\right )}}{15 \, {\left (x \log \relax (x) - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.41, size = 34, normalized size = 1.03
method | result | size |
risch | \(\frac {16 x \left (x +{\mathrm e}^{2}\right ) {\mathrm e}^{-x}}{15 \left (x -1\right )}+\frac {16 x \,{\mathrm e}^{-x}}{5 \left (x -1\right ) \ln \relax (x )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 30, normalized size = 0.91 \begin {gather*} \frac {16 \, {\left ({\left (x^{2} + x e^{2}\right )} \log \relax (x) + 3 \, x\right )} e^{\left (-x\right )}}{15 \, {\left (x - 1\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.49, size = 35, normalized size = 1.06 \begin {gather*} \frac {16\,x\,{\mathrm {e}}^{-x}\,\left (x+{\mathrm {e}}^2\right )}{15\,\left (x-1\right )}+\frac {16\,x\,{\mathrm {e}}^{-x}}{5\,\ln \relax (x)\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 36, normalized size = 1.09 \begin {gather*} \frac {\left (16 x^{2} \log {\relax (x )} + 16 x e^{2} \log {\relax (x )} + 48 x\right ) e^{- x}}{15 x \log {\relax (x )} - 15 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________