Optimal. Leaf size=19 \[ e^{x/5} x \left (4+x \log \left (2 x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.13, antiderivative size = 51, normalized size of antiderivative = 2.68, number of steps used = 9, number of rules used = 6, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {12, 2176, 2194, 1593, 2196, 2554} \begin {gather*} e^{x/5} x^2 \log \left (2 x^2\right )-10 e^{x/5} x-20 e^{x/5}+2 e^{x/5} (7 x+10) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (e^{x/5} (20+14 x)+e^{x/5} \left (10 x+x^2\right ) \log \left (2 x^2\right )\right ) \, dx\\ &=\frac {1}{5} \int e^{x/5} (20+14 x) \, dx+\frac {1}{5} \int e^{x/5} \left (10 x+x^2\right ) \log \left (2 x^2\right ) \, dx\\ &=2 e^{x/5} (10+7 x)+\frac {1}{5} \int e^{x/5} x (10+x) \log \left (2 x^2\right ) \, dx-14 \int e^{x/5} \, dx\\ &=-70 e^{x/5}+2 e^{x/5} (10+7 x)+e^{x/5} x^2 \log \left (2 x^2\right )-\frac {1}{5} \int 10 e^{x/5} x \, dx\\ &=-70 e^{x/5}+2 e^{x/5} (10+7 x)+e^{x/5} x^2 \log \left (2 x^2\right )-2 \int e^{x/5} x \, dx\\ &=-70 e^{x/5}-10 e^{x/5} x+2 e^{x/5} (10+7 x)+e^{x/5} x^2 \log \left (2 x^2\right )+10 \int e^{x/5} \, dx\\ &=-20 e^{x/5}-10 e^{x/5} x+2 e^{x/5} (10+7 x)+e^{x/5} x^2 \log \left (2 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 19, normalized size = 1.00 \begin {gather*} e^{x/5} x \left (4+x \log \left (2 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 22, normalized size = 1.16 \begin {gather*} x^{2} e^{\left (\frac {1}{5} \, x\right )} \log \left (2 \, x^{2}\right ) + 4 \, x e^{\left (\frac {1}{5} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 35, normalized size = 1.84 \begin {gather*} x^{2} e^{\left (\frac {1}{5} \, x\right )} \log \left (2 \, x^{2}\right ) + 2 \, {\left (7 \, x - 25\right )} e^{\left (\frac {1}{5} \, x\right )} - 10 \, {\left (x - 5\right )} e^{\left (\frac {1}{5} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 23, normalized size = 1.21
method | result | size |
norman | \(x^{2} {\mathrm e}^{\frac {x}{5}} \ln \left (2 x^{2}\right )+4 x \,{\mathrm e}^{\frac {x}{5}}\) | \(23\) |
default | \(4 x \,{\mathrm e}^{\frac {x}{5}}+\left (\ln \left (2 x^{2}\right )-2 \ln \relax (x )\right ) x^{2} {\mathrm e}^{\frac {x}{5}}+2 \ln \relax (x ) x^{2} {\mathrm e}^{\frac {x}{5}}\) | \(39\) |
risch | \(2 \ln \relax (x ) x^{2} {\mathrm e}^{\frac {x}{5}}+\frac {\left (100-20 x -i \pi \,x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \,x^{2} \mathrm {csgn}\left (i x^{2}\right )^{3}+2 x^{2} \ln \relax (2)\right ) {\mathrm e}^{\frac {x}{5}}}{2}+\frac {\left (-250+70 x \right ) {\mathrm e}^{\frac {x}{5}}}{5}\) | \(100\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 30, normalized size = 1.58 \begin {gather*} x^{2} e^{\left (\frac {1}{5} \, x\right )} \log \left (2 \, x^{2}\right ) + 4 \, {\left (x - 5\right )} e^{\left (\frac {1}{5} \, x\right )} + 20 \, e^{\left (\frac {1}{5} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.19, size = 16, normalized size = 0.84 \begin {gather*} x\,{\mathrm {e}}^{x/5}\,\left (x\,\ln \left (2\,x^2\right )+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 17, normalized size = 0.89 \begin {gather*} \left (x^{2} \log {\left (2 x^{2} \right )} + 4 x\right ) e^{\frac {x}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________