Optimal. Leaf size=25 \[ 2 x+\frac {\left (1+x^2\right )^2 \log (5) \log \left (3-x^4\right )}{x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.63, antiderivative size = 174, normalized size of antiderivative = 6.96, number of steps used = 22, number of rules used = 14, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.215, Rules used = {1593, 6725, 1885, 28, 1248, 702, 633, 31, 517, 2528, 2455, 275, 206, 321} \begin {gather*} \frac {\left (\sqrt {3} \left (4 \log ^2(5)+3 \log ^2(25)\right )+12 \log (5) \log (25)\right ) \log \left (\sqrt {3}-x^2\right )}{6 \log (25)}+\frac {\left (12 \log (5) \log (25)-\sqrt {3} \left (4 \log ^2(5)+3 \log ^2(25)\right )\right ) \log \left (x^2+\sqrt {3}\right )}{6 \log (25)}+x^2 \log (25)-2 x^2 \log (5)+2 \sqrt {3} \log (5) \tanh ^{-1}\left (\frac {x^2}{\sqrt {3}}\right )+\frac {2 \log (5) \tanh ^{-1}\left (\frac {x^2}{\sqrt {3}}\right )}{\sqrt {3}}+x^2 \log (5) \log \left (3-x^4\right )+\frac {\log (5) \log \left (3-x^4\right )}{x^2}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 31
Rule 206
Rule 275
Rule 321
Rule 517
Rule 633
Rule 702
Rule 1248
Rule 1593
Rule 1885
Rule 2455
Rule 2528
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6 x^3+2 x^7+\left (4 x^4+8 x^6+4 x^8\right ) \log (5)+\left (6-8 x^4+2 x^8\right ) \log (5) \log \left (3-x^4\right )}{x^3 \left (-3+x^4\right )} \, dx\\ &=\int \left (\frac {2 \left (-3+x^4+4 x^3 \log (5)+x \log (25)+x^5 \log (25)\right )}{-3+x^4}+\frac {2 (-1+x) (1+x) \left (1+x^2\right ) \log (5) \log \left (3-x^4\right )}{x^3}\right ) \, dx\\ &=2 \int \frac {-3+x^4+4 x^3 \log (5)+x \log (25)+x^5 \log (25)}{-3+x^4} \, dx+(2 \log (5)) \int \frac {(-1+x) (1+x) \left (1+x^2\right ) \log \left (3-x^4\right )}{x^3} \, dx\\ &=2 \int \left (1+\frac {x \left (4 x^2 \log (5)+\log (25)+x^4 \log (25)\right )}{-3+x^4}\right ) \, dx+(2 \log (5)) \int \frac {\left (-1+x^2\right ) \left (1+x^2\right ) \log \left (3-x^4\right )}{x^3} \, dx\\ &=2 x+2 \int \frac {x \left (4 x^2 \log (5)+\log (25)+x^4 \log (25)\right )}{-3+x^4} \, dx+(2 \log (5)) \int \left (-\frac {\log \left (3-x^4\right )}{x^3}+x \log \left (3-x^4\right )\right ) \, dx\\ &=2 x-(2 \log (5)) \int \frac {\log \left (3-x^4\right )}{x^3} \, dx+(2 \log (5)) \int x \log \left (3-x^4\right ) \, dx+\frac {2 \int \frac {x \left (2 \log (5)+x^2 \log (25)\right )^2}{-3+x^4} \, dx}{\log (25)}\\ &=2 x+\frac {\log (5) \log \left (3-x^4\right )}{x^2}+x^2 \log (5) \log \left (3-x^4\right )+(4 \log (5)) \int \frac {x}{3-x^4} \, dx+(4 \log (5)) \int \frac {x^5}{3-x^4} \, dx+\frac {\operatorname {Subst}\left (\int \frac {(2 \log (5)+x \log (25))^2}{-3+x^2} \, dx,x,x^2\right )}{\log (25)}\\ &=2 x+\frac {\log (5) \log \left (3-x^4\right )}{x^2}+x^2 \log (5) \log \left (3-x^4\right )+(2 \log (5)) \operatorname {Subst}\left (\int \frac {1}{3-x^2} \, dx,x,x^2\right )+(2 \log (5)) \operatorname {Subst}\left (\int \frac {x^2}{3-x^2} \, dx,x,x^2\right )+\frac {\operatorname {Subst}\left (\int \left (\log ^2(25)+\frac {4 \log ^2(5)+4 x \log (5) \log (25)+3 \log ^2(25)}{-3+x^2}\right ) \, dx,x,x^2\right )}{\log (25)}\\ &=2 x-2 x^2 \log (5)+\frac {2 \tanh ^{-1}\left (\frac {x^2}{\sqrt {3}}\right ) \log (5)}{\sqrt {3}}+x^2 \log (25)+\frac {\log (5) \log \left (3-x^4\right )}{x^2}+x^2 \log (5) \log \left (3-x^4\right )+(6 \log (5)) \operatorname {Subst}\left (\int \frac {1}{3-x^2} \, dx,x,x^2\right )+\frac {\operatorname {Subst}\left (\int \frac {4 \log ^2(5)+4 x \log (5) \log (25)+3 \log ^2(25)}{-3+x^2} \, dx,x,x^2\right )}{\log (25)}\\ &=2 x-2 x^2 \log (5)+\frac {2 \tanh ^{-1}\left (\frac {x^2}{\sqrt {3}}\right ) \log (5)}{\sqrt {3}}+2 \sqrt {3} \tanh ^{-1}\left (\frac {x^2}{\sqrt {3}}\right ) \log (5)+x^2 \log (25)+\frac {\log (5) \log \left (3-x^4\right )}{x^2}+x^2 \log (5) \log \left (3-x^4\right )+\frac {\left (2 \log (5) \log (25)-\frac {4 \log ^2(5)+3 \log ^2(25)}{2 \sqrt {3}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {3}+x} \, dx,x,x^2\right )}{\log (25)}+\frac {\left (2 \log (5) \log (25)+\frac {4 \log ^2(5)+3 \log ^2(25)}{2 \sqrt {3}}\right ) \operatorname {Subst}\left (\int \frac {1}{-\sqrt {3}+x} \, dx,x,x^2\right )}{\log (25)}\\ &=2 x-2 x^2 \log (5)+\frac {2 \tanh ^{-1}\left (\frac {x^2}{\sqrt {3}}\right ) \log (5)}{\sqrt {3}}+2 \sqrt {3} \tanh ^{-1}\left (\frac {x^2}{\sqrt {3}}\right ) \log (5)+x^2 \log (25)+\frac {\left (12 \log (5) \log (25)+\sqrt {3} \left (4 \log ^2(5)+3 \log ^2(25)\right )\right ) \log \left (\sqrt {3}-x^2\right )}{6 \log (25)}+\frac {\left (12 \log (5) \log (25)-\sqrt {3} \left (4 \log ^2(5)+3 \log ^2(25)\right )\right ) \log \left (\sqrt {3}+x^2\right )}{6 \log (25)}+\frac {\log (5) \log \left (3-x^4\right )}{x^2}+x^2 \log (5) \log \left (3-x^4\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.19, size = 111, normalized size = 4.44 \begin {gather*} \frac {1}{3} \left (6 x+8 \sqrt {3} \tanh ^{-1}\left (\frac {x^2}{\sqrt {3}}\right ) \log (5)+\left (\sqrt {3} \log (625)+\log (15625)\right ) \log \left (\sqrt {3}-x^2\right )-\sqrt {3} \log (625) \log \left (\sqrt {3}+x^2\right )+\log (15625) \log \left (\sqrt {3}+x^2\right )+\frac {\log (125) \log \left (3-x^4\right )}{x^2}+x^2 \log (125) \log \left (3-x^4\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.98, size = 31, normalized size = 1.24 \begin {gather*} \frac {2 \, x^{3} + {\left (x^{4} + 2 \, x^{2} + 1\right )} \log \relax (5) \log \left (-x^{4} + 3\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 36, normalized size = 1.44 \begin {gather*} 2 \, \log \relax (5) \log \left (x^{4} - 3\right ) + {\left (x^{2} \log \relax (5) + \frac {\log \relax (5)}{x^{2}}\right )} \log \left (-x^{4} + 3\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 34, normalized size = 1.36
method | result | size |
risch | \(\frac {\ln \relax (5) \left (x^{4}+1\right ) \ln \left (-x^{4}+3\right )}{x^{2}}+2 x +2 \ln \relax (5) \ln \left (x^{4}-3\right )\) | \(34\) |
default | \(2 x +\ln \relax (5) x^{2} \ln \left (-x^{4}+3\right )+\frac {\ln \relax (5) \ln \left (-x^{4}+3\right )}{x^{2}}+2 \ln \relax (5) \ln \left (x^{4}-3\right )\) | \(43\) |
norman | \(\frac {\ln \relax (5) \ln \left (-x^{4}+3\right )+2 \ln \relax (5) x^{2} \ln \left (-x^{4}+3\right )+\ln \relax (5) \ln \left (-x^{4}+3\right ) x^{4}+2 x^{3}}{x^{2}}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 113, normalized size = 4.52 \begin {gather*} {\left (2 \, x^{2} - \sqrt {3} \log \left (x^{2} + \sqrt {3}\right ) + \sqrt {3} \log \left (x^{2} - \sqrt {3}\right )\right )} \log \relax (5) + {\left (\sqrt {3} \log \left (x^{2} + \sqrt {3}\right ) - \sqrt {3} \log \left (x^{2} - \sqrt {3}\right )\right )} \log \relax (5) + 2 \, \log \relax (5) \log \left (x^{4} - 3\right ) + 2 \, x - \frac {2 \, x^{4} \log \relax (5) - {\left (x^{4} \log \relax (5) + \log \relax (5)\right )} \log \left (-x^{4} + 3\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.39, size = 35, normalized size = 1.40 \begin {gather*} 2\,x+2\,\ln \relax (5)\,\ln \left (x^4-3\right )+\frac {\ln \left (3-x^4\right )\,\left (\ln \relax (5)\,x^4+\ln \relax (5)\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 34, normalized size = 1.36 \begin {gather*} 2 x + 2 \log {\relax (5 )} \log {\left (x^{4} - 3 \right )} + \frac {\left (x^{4} \log {\relax (5 )} + \log {\relax (5 )}\right ) \log {\left (3 - x^{4} \right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________