Optimal. Leaf size=24 \[ 3-\frac {3}{x}+x+\log \left (\frac {5-x}{4 (-5+\log (x))^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.50, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 7, number of rules used = 5, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {6741, 6742, 1620, 2302, 29} \begin {gather*} x-\frac {3}{x}+\log (5-x)-2 \log (5-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 1620
Rule 2302
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {75-5 x+18 x^2-5 x^3+\left (-15+3 x-4 x^2+x^3\right ) \log (x)}{(5-x) x^2 (5-\log (x))} \, dx\\ &=\int \left (\frac {-15+3 x-4 x^2+x^3}{(-5+x) x^2}-\frac {2}{x (-5+\log (x))}\right ) \, dx\\ &=-\left (2 \int \frac {1}{x (-5+\log (x))} \, dx\right )+\int \frac {-15+3 x-4 x^2+x^3}{(-5+x) x^2} \, dx\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,-5+\log (x)\right )\right )+\int \left (1+\frac {1}{-5+x}+\frac {3}{x^2}\right ) \, dx\\ &=-\frac {3}{x}+x+\log (5-x)-2 \log (5-\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.92 \begin {gather*} -\frac {3}{x}+x+\log (5-x)-2 \log (5-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 23, normalized size = 0.96 \begin {gather*} \frac {x^{2} + x \log \left (x - 5\right ) - 2 \, x \log \left (\log \relax (x) - 5\right ) - 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.98, size = 18, normalized size = 0.75 \begin {gather*} x - \frac {3}{x} + \log \left (x - 5\right ) - 2 \, \log \left (\log \relax (x) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.92
method | result | size |
norman | \(\frac {x^{2}-3}{x}-2 \ln \left (\ln \relax (x )-5\right )+\ln \left (x -5\right )\) | \(22\) |
risch | \(\frac {\ln \left (x -5\right ) x +x^{2}-3}{x}-2 \ln \left (\ln \relax (x )-5\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 21, normalized size = 0.88 \begin {gather*} \frac {x^{2} - 3}{x} + \log \left (x - 5\right ) - 2 \, \log \left (\log \relax (x) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.25, size = 18, normalized size = 0.75 \begin {gather*} x+\ln \left (x-5\right )-2\,\ln \left (\ln \relax (x)-5\right )-\frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.71 \begin {gather*} x + \log {\left (x - 5 \right )} - 2 \log {\left (\log {\relax (x )} - 5 \right )} - \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________