Optimal. Leaf size=20 \[ \log \left (2+\log \left (\log \left (x^2 \left (5-x-\frac {3 \log (3)}{2}\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 21, normalized size of antiderivative = 1.05, number of steps used = 2, number of rules used = 2, integrand size = 113, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {6688, 6684} \begin {gather*} \log \left (\log \left (\log \left (\frac {1}{2} x^2 (-2 x+10-\log (27))\right )\right )+2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20-6 x-\log (729)}{x (10-2 x-\log (27)) \log \left (-\frac {1}{2} x^2 (-10+2 x+\log (27))\right ) \left (2+\log \left (\log \left (-\frac {1}{2} x^2 (-10+2 x+\log (27))\right )\right )\right )} \, dx\\ &=\log \left (2+\log \left (\log \left (\frac {1}{2} x^2 (10-2 x-\log (27))\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.55, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-20+6 x+6 \log (3)}{\left (-20 x+4 x^2+6 x \log (3)\right ) \log \left (\frac {1}{2} \left (10 x^2-2 x^3-3 x^2 \log (3)\right )\right )+\left (-10 x+2 x^2+3 x \log (3)\right ) \log \left (\frac {1}{2} \left (10 x^2-2 x^3-3 x^2 \log (3)\right )\right ) \log \left (\log \left (\frac {1}{2} \left (10 x^2-2 x^3-3 x^2 \log (3)\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 23, normalized size = 1.15 \begin {gather*} \log \left (\log \left (\log \left (-x^{3} - \frac {3}{2} \, x^{2} \log \relax (3) + 5 \, x^{2}\right )\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.98, size = 28, normalized size = 1.40 \begin {gather*} \log \left (\log \left (-\log \relax (2) + \log \left (-2 \, x^{3} - 3 \, x^{2} \log \relax (3) + 10 \, x^{2}\right )\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 24, normalized size = 1.20
method | result | size |
norman | \(\ln \left (\ln \left (\ln \left (-\frac {3 x^{2} \ln \relax (3)}{2}-x^{3}+5 x^{2}\right )\right )+2\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 23, normalized size = 1.15 \begin {gather*} \log \left (\log \left (-\log \relax (2) + 2 \, \log \relax (x) + \log \left (-2 \, x - 3 \, \log \relax (3) + 10\right )\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.40, size = 23, normalized size = 1.15 \begin {gather*} \ln \left (\ln \left (\ln \left (5\,x^2-\frac {3\,x^2\,\ln \relax (3)}{2}-x^3\right )\right )+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 24, normalized size = 1.20 \begin {gather*} \log {\left (\log {\left (\log {\left (- x^{3} - \frac {3 x^{2} \log {\relax (3 )}}{2} + 5 x^{2} \right )} \right )} + 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________