Optimal. Leaf size=26 \[ 4-\frac {\left (3+e^{2 e^2}\right ) \left (-1+x+4 x^2\right )}{(-2+x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 37, normalized size of antiderivative = 1.42, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6, 12, 2074} \begin {gather*} \frac {17 \left (3+e^{2 e^2}\right )}{2-x}-\frac {17 \left (3+e^{2 e^2}\right )}{(2-x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (51+17 e^{2 e^2}\right ) x}{-8+12 x-6 x^2+x^3} \, dx\\ &=\left (17 \left (3+e^{2 e^2}\right )\right ) \int \frac {x}{-8+12 x-6 x^2+x^3} \, dx\\ &=\left (17 \left (3+e^{2 e^2}\right )\right ) \int \left (\frac {2}{(-2+x)^3}+\frac {1}{(-2+x)^2}\right ) \, dx\\ &=-\frac {17 \left (3+e^{2 e^2}\right )}{(2-x)^2}+\frac {17 \left (3+e^{2 e^2}\right )}{2-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 21, normalized size = 0.81 \begin {gather*} \frac {17 \left (3+e^{2 e^2}\right ) (1-x)}{(-2+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 26, normalized size = 1.00 \begin {gather*} -\frac {17 \, {\left ({\left (x - 1\right )} e^{\left (2 \, e^{2}\right )} + 3 \, x - 3\right )}}{x^{2} - 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 26, normalized size = 1.00 \begin {gather*} -\frac {17 \, {\left (x e^{\left (2 \, e^{2}\right )} + 3 \, x - e^{\left (2 \, e^{2}\right )} - 3\right )}}{{\left (x - 2\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 0.96
method | result | size |
gosper | \(-\frac {17 \left ({\mathrm e}^{2 \,{\mathrm e}^{2}}+3\right ) \left (x -1\right )}{x^{2}-4 x +4}\) | \(25\) |
default | \(17 \left ({\mathrm e}^{2 \,{\mathrm e}^{2}}+3\right ) \left (-\frac {1}{\left (x -2\right )^{2}}-\frac {1}{x -2}\right )\) | \(27\) |
norman | \(\frac {\left (-17 \,{\mathrm e}^{2 \,{\mathrm e}^{2}}-51\right ) x +17 \,{\mathrm e}^{2 \,{\mathrm e}^{2}}+51}{\left (x -2\right )^{2}}\) | \(31\) |
risch | \(\frac {\left (-17 \,{\mathrm e}^{2 \,{\mathrm e}^{2}}-51\right ) x +17 \,{\mathrm e}^{2 \,{\mathrm e}^{2}}+51}{x^{2}-4 x +4}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 30, normalized size = 1.15 \begin {gather*} -\frac {17 \, {\left (x {\left (e^{\left (2 \, e^{2}\right )} + 3\right )} - e^{\left (2 \, e^{2}\right )} - 3\right )}}{x^{2} - 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 17, normalized size = 0.65 \begin {gather*} -\frac {17\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^2}+3\right )\,\left (x-1\right )}{{\left (x-2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 20, normalized size = 0.77 \begin {gather*} \frac {\left (1 - x\right ) \left (51 + 17 e^{2 e^{2}}\right )}{x^{2} - 4 x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________