Optimal. Leaf size=18 \[ \frac {5}{x^2 (5+\log (2+\log (-4-x)))} \]
________________________________________________________________________________________
Rubi [F] time = 2.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-400-105 x+(-200-50 x) \log (-4-x)+(-80-20 x+(-40-10 x) \log (-4-x)) \log (2+\log (-4-x))}{200 x^3+50 x^4+\left (100 x^3+25 x^4\right ) \log (-4-x)+\left (80 x^3+20 x^4+\left (40 x^3+10 x^4\right ) \log (-4-x)\right ) \log (2+\log (-4-x))+\left (8 x^3+2 x^4+\left (4 x^3+x^4\right ) \log (-4-x)\right ) \log ^2(2+\log (-4-x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 (-80-21 x-4 (4+x) \log (2+\log (-4-x))-2 (4+x) \log (-4-x) (5+\log (2+\log (-4-x))))}{x^3 (4+x) (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2} \, dx\\ &=5 \int \frac {-80-21 x-4 (4+x) \log (2+\log (-4-x))-2 (4+x) \log (-4-x) (5+\log (2+\log (-4-x)))}{x^3 (4+x) (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2} \, dx\\ &=5 \int \left (-\frac {1}{x^2 (4+x) (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2}-\frac {2}{x^3 (5+\log (2+\log (-4-x)))}\right ) \, dx\\ &=-\left (5 \int \frac {1}{x^2 (4+x) (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2} \, dx\right )-10 \int \frac {1}{x^3 (5+\log (2+\log (-4-x)))} \, dx\\ &=-\left (5 \int \left (\frac {1}{4 x^2 (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2}-\frac {1}{16 x (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2}+\frac {1}{16 (4+x) (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2}\right ) \, dx\right )-10 \int \frac {1}{x^3 (5+\log (2+\log (-4-x)))} \, dx\\ &=\frac {5}{16} \int \frac {1}{x (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2} \, dx-\frac {5}{16} \int \frac {1}{(4+x) (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2} \, dx-\frac {5}{4} \int \frac {1}{x^2 (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2} \, dx-10 \int \frac {1}{x^3 (5+\log (2+\log (-4-x)))} \, dx\\ &=\frac {5}{16 (5+\log (2+\log (-4-x)))}+\frac {5}{16} \int \frac {1}{x (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2} \, dx-\frac {5}{4} \int \frac {1}{x^2 (2+\log (-4-x)) (5+\log (2+\log (-4-x)))^2} \, dx-10 \int \frac {1}{x^3 (5+\log (2+\log (-4-x)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 18, normalized size = 1.00 \begin {gather*} \frac {5}{x^2 (5+\log (2+\log (-4-x)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.06, size = 23, normalized size = 1.28 \begin {gather*} \frac {5}{x^{2} \log \left (\log \left (-x - 4\right ) + 2\right ) + 5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 23, normalized size = 1.28 \begin {gather*} \frac {5}{x^{2} \log \left (\log \left (-x - 4\right ) + 2\right ) + 5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 19, normalized size = 1.06
method | result | size |
risch | \(\frac {5}{\left (5+\ln \left (\ln \left (-x -4\right )+2\right )\right ) x^{2}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 23, normalized size = 1.28 \begin {gather*} \frac {5}{x^{2} \log \left (\log \left (-x - 4\right ) + 2\right ) + 5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.60, size = 18, normalized size = 1.00 \begin {gather*} \frac {5}{x^2\,\left (\ln \left (\ln \left (-x-4\right )+2\right )+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 19, normalized size = 1.06 \begin {gather*} \frac {5}{x^{2} \log {\left (\log {\left (- x - 4 \right )} + 2 \right )} + 5 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________