Optimal. Leaf size=26 \[ \log \left (\log \left (20+\log \left (5-e^{-5+\left (x+\frac {5}{x^2 \log (x)}\right )^2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 26.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {25+10 x^3 \log (x)+\left (-5 x^4+x^6\right ) \log ^2(x)}{x^4 \log ^2(x)}\right ) \left (-50+\left (-100-10 x^3\right ) \log (x)-10 x^3 \log ^2(x)+2 x^6 \log ^3(x)\right )}{\left (-100 x^5 \log ^3(x)+20 \exp \left (\frac {25+10 x^3 \log (x)+\left (-5 x^4+x^6\right ) \log ^2(x)}{x^4 \log ^2(x)}\right ) x^5 \log ^3(x)+\log \left (5-\exp \left (\frac {25+10 x^3 \log (x)+\left (-5 x^4+x^6\right ) \log ^2(x)}{x^4 \log ^2(x)}\right )\right ) \left (-5 x^5 \log ^3(x)+\exp \left (\frac {25+10 x^3 \log (x)+\left (-5 x^4+x^6\right ) \log ^2(x)}{x^4 \log ^2(x)}\right ) x^5 \log ^3(x)\right )\right ) \log \left (20+\log \left (5-\exp \left (\frac {25+10 x^3 \log (x)+\left (-5 x^4+x^6\right ) \log ^2(x)}{x^4 \log ^2(x)}\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}} \left (25+5 \left (10+x^3\right ) \log (x)+5 x^3 \log ^2(x)-x^6 \log ^3(x)\right )}{\left (5 e^5-e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^5 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log ^3(x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )} \, dx\\ &=2 \int \frac {e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}} \left (25+5 \left (10+x^3\right ) \log (x)+5 x^3 \log ^2(x)-x^6 \log ^3(x)\right )}{\left (5 e^5-e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^5 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log ^3(x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )} \, dx\\ &=2 \int \left (\frac {e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}} x}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )}-\frac {25 e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^5 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log ^3(x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )}-\frac {50 e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^5 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log ^2(x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )}-\frac {5 e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^2 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log ^2(x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )}-\frac {5 e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^2 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log (x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )}\right ) \, dx\\ &=2 \int \frac {e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}} x}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )} \, dx-10 \int \frac {e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^2 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log ^2(x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )} \, dx-10 \int \frac {e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^2 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log (x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )} \, dx-50 \int \frac {e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^5 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log ^3(x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )} \, dx-100 \int \frac {e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}}{\left (-5 e^5+e^{\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right ) x^5 \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right ) \log ^2(x) \log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 31, normalized size = 1.19 \begin {gather*} \log \left (\log \left (20+\log \left (5-e^{-5+\frac {\left (5+x^3 \log (x)\right )^2}{x^4 \log ^2(x)}}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 41, normalized size = 1.58 \begin {gather*} \log \left (\log \left (\log \left (-e^{\left (\frac {10 \, x^{3} \log \relax (x) + {\left (x^{6} - 5 \, x^{4}\right )} \log \relax (x)^{2} + 25}{x^{4} \log \relax (x)^{2}}\right )} + 5\right ) + 20\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 45, normalized size = 1.73
method | result | size |
risch | \(\ln \left (\ln \left (\ln \left (-{\mathrm e}^{\frac {x^{6} \ln \relax (x )^{2}-5 x^{4} \ln \relax (x )^{2}+10 x^{3} \ln \relax (x )+25}{x^{4} \ln \relax (x )^{2}}}+5\right )+20\right )\right )\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 35, normalized size = 1.35 \begin {gather*} \log \left (\log \left (\log \left (5 \, e^{5} - e^{\left (x^{2} + \frac {10}{x \log \relax (x)} + \frac {25}{x^{4} \log \relax (x)^{2}}\right )}\right ) + 15\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.59, size = 35, normalized size = 1.35 \begin {gather*} \ln \left (\ln \left (\ln \left (5-{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^{\frac {10}{x\,\ln \relax (x)}}\,{\mathrm {e}}^{\frac {25}{x^4\,{\ln \relax (x)}^2}}\right )+20\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________