Optimal. Leaf size=24 \[ \frac {\log \left (\frac {5 x}{\log (x)}\right )}{-\frac {1}{x}+\frac {625 x^4}{16}} \]
________________________________________________________________________________________
Rubi [A] time = 1.62, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 21, number of rules used = 12, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {28, 6742, 6725, 202, 634, 618, 204, 628, 31, 383, 2555, 12} \begin {gather*} -\frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{16-625 x^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 28
Rule 31
Rule 202
Rule 204
Rule 383
Rule 618
Rule 628
Rule 634
Rule 2555
Rule 6725
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=390625 \int \frac {256-10000 x^5+\left (-256+10000 x^5\right ) \log (x)+\left (-256-40000 x^5\right ) \log (x) \log \left (\frac {5 x}{\log (x)}\right )}{\left (-10000+390625 x^5\right )^2 \log (x)} \, dx\\ &=390625 \int \left (\frac {16 (-1+\log (x))}{390625 \left (-16+625 x^5\right ) \log (x)}-\frac {64 \left (4+625 x^5\right ) \log \left (\frac {5 x}{\log (x)}\right )}{390625 \left (-16+625 x^5\right )^2}\right ) \, dx\\ &=16 \int \frac {-1+\log (x)}{\left (-16+625 x^5\right ) \log (x)} \, dx-64 \int \frac {\left (4+625 x^5\right ) \log \left (\frac {5 x}{\log (x)}\right )}{\left (-16+625 x^5\right )^2} \, dx\\ &=-\frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{16-625 x^5}+16 \int \left (\frac {1}{-16+625 x^5}-\frac {1}{\left (-16+625 x^5\right ) \log (x)}\right ) \, dx+64 \int \frac {-1+\log (x)}{4 \left (16-625 x^5\right ) \log (x)} \, dx\\ &=-\frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{16-625 x^5}+16 \int \frac {1}{-16+625 x^5} \, dx-16 \int \frac {1}{\left (-16+625 x^5\right ) \log (x)} \, dx+16 \int \frac {-1+\log (x)}{\left (16-625 x^5\right ) \log (x)} \, dx\\ &=-\frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{16-625 x^5}+16 \int \left (\frac {1}{16-625 x^5}+\frac {1}{\left (-16+625 x^5\right ) \log (x)}\right ) \, dx-16 \int \frac {1}{\left (-16+625 x^5\right ) \log (x)} \, dx-\frac {1}{5} 2^{4/5} \int \frac {1}{2^{4/5}-5^{4/5} x} \, dx-\frac {1}{5} \left (2\ 2^{4/5}\right ) \int \frac {2^{4/5}+\frac {1}{4} 5^{4/5} \left (1-\sqrt {5}\right ) x}{2\ 2^{3/5}+\frac {5^{4/5} \left (1-\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx-\frac {1}{5} \left (2\ 2^{4/5}\right ) \int \frac {2^{4/5}+\frac {1}{4} 5^{4/5} \left (1+\sqrt {5}\right ) x}{2\ 2^{3/5}+\frac {5^{4/5} \left (1+\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx\\ &=\frac {1}{5} \left (\frac {2}{5}\right )^{4/5} \log \left (2^{4/5}-5^{4/5} x\right )-\frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{16-625 x^5}+16 \int \frac {1}{16-625 x^5} \, dx-\frac {\left (1-\sqrt {5}\right ) \int \frac {\frac {5^{4/5} \left (1-\sqrt {5}\right )}{\sqrt [5]{2}}+10\ 5^{3/5} x}{2\ 2^{3/5}+\frac {5^{4/5} \left (1-\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx}{10 \sqrt [5]{2} 5^{4/5}}-\frac {\left (5-\sqrt {5}\right ) \int \frac {1}{2\ 2^{3/5}+\frac {5^{4/5} \left (1+\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx}{5\ 2^{2/5}}-\frac {\left (1+\sqrt {5}\right ) \int \frac {\frac {5^{4/5} \left (1+\sqrt {5}\right )}{\sqrt [5]{2}}+10\ 5^{3/5} x}{2\ 2^{3/5}+\frac {5^{4/5} \left (1+\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx}{10 \sqrt [5]{2} 5^{4/5}}-\frac {\left (5+\sqrt {5}\right ) \int \frac {1}{2\ 2^{3/5}+\frac {5^{4/5} \left (1-\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx}{5\ 2^{2/5}}\\ &=\frac {1}{5} \left (\frac {2}{5}\right )^{4/5} \log \left (2^{4/5}-5^{4/5} x\right )-\frac {\left (1-\sqrt {5}\right ) \log \left (4\ 2^{3/5}-5\ 2^{4/5} 5^{3/10} x+10^{4/5} x+10\ 5^{3/5} x^2\right )}{10 \sqrt [5]{2} 5^{4/5}}-\frac {\left (1+\sqrt {5}\right ) \log \left (4\ 2^{3/5}+5\ 2^{4/5} 5^{3/10} x+10^{4/5} x+10\ 5^{3/5} x^2\right )}{10 \sqrt [5]{2} 5^{4/5}}-\frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{16-625 x^5}+\frac {1}{5} 2^{4/5} \int \frac {1}{2^{4/5}-5^{4/5} x} \, dx+\frac {1}{5} \left (2\ 2^{4/5}\right ) \int \frac {2^{4/5}+\frac {1}{4} 5^{4/5} \left (1-\sqrt {5}\right ) x}{2\ 2^{3/5}+\frac {5^{4/5} \left (1-\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx+\frac {1}{5} \left (2\ 2^{4/5}\right ) \int \frac {2^{4/5}+\frac {1}{4} 5^{4/5} \left (1+\sqrt {5}\right ) x}{2\ 2^{3/5}+\frac {5^{4/5} \left (1+\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx+\frac {1}{5} \left (2^{3/5} \left (5-\sqrt {5}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{25\ 2^{3/5} \sqrt [10]{5} \left (1-\sqrt {5}\right )-x^2} \, dx,x,\frac {5^{4/5} \left (1+\sqrt {5}\right )}{\sqrt [5]{2}}+10\ 5^{3/5} x\right )+\frac {1}{5} \left (2^{3/5} \left (5+\sqrt {5}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-25 2^{3/5} \left (\sqrt [10]{5}+5^{3/5}\right )-x^2} \, dx,x,\frac {5^{4/5} \left (1-\sqrt {5}\right )}{\sqrt [5]{2}}+10\ 5^{3/5} x\right )\\ &=-\frac {2^{3/10} \sqrt {1+\sqrt {5}} \tan ^{-1}\left (\frac {1-\sqrt {5}+2 \sqrt [5]{2} 5^{4/5} x}{\sqrt [4]{5} \sqrt {2 \left (1+\sqrt {5}\right )}}\right )}{5\ 5^{11/20}}-\frac {2^{3/10} \sqrt {-1+\sqrt {5}} \tan ^{-1}\left (\frac {1+\sqrt {5}+2 \sqrt [5]{2} 5^{4/5} x}{\sqrt [4]{5} \sqrt {2 \left (-1+\sqrt {5}\right )}}\right )}{5\ 5^{11/20}}-\frac {\left (1-\sqrt {5}\right ) \log \left (4\ 2^{3/5}-5\ 2^{4/5} 5^{3/10} x+10^{4/5} x+10\ 5^{3/5} x^2\right )}{10 \sqrt [5]{2} 5^{4/5}}-\frac {\left (1+\sqrt {5}\right ) \log \left (4\ 2^{3/5}+5\ 2^{4/5} 5^{3/10} x+10^{4/5} x+10\ 5^{3/5} x^2\right )}{10 \sqrt [5]{2} 5^{4/5}}-\frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{16-625 x^5}+\frac {\left (1-\sqrt {5}\right ) \int \frac {\frac {5^{4/5} \left (1-\sqrt {5}\right )}{\sqrt [5]{2}}+10\ 5^{3/5} x}{2\ 2^{3/5}+\frac {5^{4/5} \left (1-\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx}{10 \sqrt [5]{2} 5^{4/5}}+\frac {\left (5-\sqrt {5}\right ) \int \frac {1}{2\ 2^{3/5}+\frac {5^{4/5} \left (1+\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx}{5\ 2^{2/5}}+\frac {\left (1+\sqrt {5}\right ) \int \frac {\frac {5^{4/5} \left (1+\sqrt {5}\right )}{\sqrt [5]{2}}+10\ 5^{3/5} x}{2\ 2^{3/5}+\frac {5^{4/5} \left (1+\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx}{10 \sqrt [5]{2} 5^{4/5}}+\frac {\left (5+\sqrt {5}\right ) \int \frac {1}{2\ 2^{3/5}+\frac {5^{4/5} \left (1-\sqrt {5}\right ) x}{\sqrt [5]{2}}+5\ 5^{3/5} x^2} \, dx}{5\ 2^{2/5}}\\ &=-\frac {2^{3/10} \sqrt {1+\sqrt {5}} \tan ^{-1}\left (\frac {1-\sqrt {5}+2 \sqrt [5]{2} 5^{4/5} x}{\sqrt [4]{5} \sqrt {2 \left (1+\sqrt {5}\right )}}\right )}{5\ 5^{11/20}}-\frac {2^{3/10} \sqrt {-1+\sqrt {5}} \tan ^{-1}\left (\frac {1+\sqrt {5}+2 \sqrt [5]{2} 5^{4/5} x}{\sqrt [4]{5} \sqrt {2 \left (-1+\sqrt {5}\right )}}\right )}{5\ 5^{11/20}}-\frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{16-625 x^5}-\frac {1}{5} \left (2^{3/5} \left (5-\sqrt {5}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{25\ 2^{3/5} \sqrt [10]{5} \left (1-\sqrt {5}\right )-x^2} \, dx,x,\frac {5^{4/5} \left (1+\sqrt {5}\right )}{\sqrt [5]{2}}+10\ 5^{3/5} x\right )-\frac {1}{5} \left (2^{3/5} \left (5+\sqrt {5}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-25 2^{3/5} \left (\sqrt [10]{5}+5^{3/5}\right )-x^2} \, dx,x,\frac {5^{4/5} \left (1-\sqrt {5}\right )}{\sqrt [5]{2}}+10\ 5^{3/5} x\right )\\ &=-\frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{16-625 x^5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 20, normalized size = 0.83 \begin {gather*} \frac {16 x \log \left (\frac {5 x}{\log (x)}\right )}{-16+625 x^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 20, normalized size = 0.83 \begin {gather*} \frac {16 \, x \log \left (\frac {5 \, x}{\log \relax (x)}\right )}{625 \, x^{5} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.97, size = 44, normalized size = 1.83 \begin {gather*} \frac {16 \, x \log \relax (5)}{625 \, x^{5} - 16} + \frac {16 \, x \log \relax (x)}{625 \, x^{5} - 16} - \frac {16 \, x \log \left (\log \relax (x)\right )}{625 \, x^{5} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.29, size = 122, normalized size = 5.08
method | result | size |
risch | \(-\frac {16 x \ln \left (\ln \relax (x )\right )}{625 x^{5}-16}+\frac {8 x \left (-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i x}{\ln \relax (x )}\right )^{3}+2 \ln \relax (5)+2 \ln \relax (x )\right )}{625 x^{5}-16}\) | \(122\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 26, normalized size = 1.08 \begin {gather*} \frac {16 \, {\left (x \log \relax (5) + x \log \relax (x) - x \log \left (\log \relax (x)\right )\right )}}{625 \, x^{5} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.30, size = 20, normalized size = 0.83 \begin {gather*} \frac {16\,x\,\ln \left (\frac {5\,x}{\ln \relax (x)}\right )}{625\,\left (x^5-\frac {16}{625}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 17, normalized size = 0.71 \begin {gather*} \frac {16 x \log {\left (\frac {5 x}{\log {\relax (x )}} \right )}}{625 x^{5} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________