Optimal. Leaf size=31 \[ -2+\frac {5 \left (-\frac {1}{e^{5/4}}+3 (4-x)^2\right )}{e^3 x \log (5)} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 34, normalized size of antiderivative = 1.10, number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {12, 14} \begin {gather*} \frac {15 x}{e^3 \log (5)}-\frac {5 \left (1-48 e^{5/4}\right )}{e^{17/4} x \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {5+e^{5/4} \left (-240+15 x^2\right )}{x^2} \, dx}{e^{17/4} \log (5)}\\ &=\frac {\int \left (15 e^{5/4}-\frac {5 \left (-1+48 e^{5/4}\right )}{x^2}\right ) \, dx}{e^{17/4} \log (5)}\\ &=-\frac {5 \left (1-48 e^{5/4}\right )}{e^{17/4} x \log (5)}+\frac {15 x}{e^3 \log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 27, normalized size = 0.87 \begin {gather*} \frac {-5+15 e^{5/4} \left (16+x^2\right )}{e^{17/4} x \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 22, normalized size = 0.71 \begin {gather*} \frac {5 \, {\left (3 \, {\left (x^{2} + 16\right )} e^{\frac {5}{4}} - 1\right )} e^{\left (-\frac {17}{4}\right )}}{x \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 0.77 \begin {gather*} \frac {5 \, {\left (3 \, x e^{\frac {5}{4}} + \frac {48 \, e^{\frac {5}{4}} - 1}{x}\right )} e^{\left (-\frac {17}{4}\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 1.00
method | result | size |
gosper | \(\frac {5 \left (3 x^{2} {\mathrm e}^{\frac {5}{4}}-1+48 \,{\mathrm e}^{\frac {5}{4}}\right ) {\mathrm e}^{-3} {\mathrm e}^{-\frac {5}{4}}}{\ln \relax (5) x}\) | \(31\) |
default | \(\frac {{\mathrm e}^{-\frac {5}{4}} {\mathrm e}^{-3} \left (15 x \,{\mathrm e}^{\frac {5}{4}}-\frac {5 \left (-48 \,{\mathrm e}^{\frac {5}{4}}+1\right )}{x}\right )}{\ln \relax (5)}\) | \(31\) |
risch | \(\frac {15 \,{\mathrm e}^{-3} x}{\ln \relax (5)}+\frac {240 \,{\mathrm e}^{-\frac {17}{4}} {\mathrm e}^{\frac {5}{4}}}{\ln \relax (5) x}-\frac {5 \,{\mathrm e}^{-\frac {17}{4}}}{\ln \relax (5) x}\) | \(35\) |
norman | \(\frac {\frac {15 \,{\mathrm e}^{-3} x^{2}}{\ln \relax (5)}+\frac {5 \left (48 \,{\mathrm e}^{\frac {5}{4}}-1\right ) {\mathrm e}^{-\frac {5}{4}} {\mathrm e}^{-3}}{\ln \relax (5)}}{x}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 24, normalized size = 0.77 \begin {gather*} \frac {5 \, {\left (3 \, x e^{\frac {5}{4}} + \frac {48 \, e^{\frac {5}{4}} - 1}{x}\right )} e^{\left (-\frac {17}{4}\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.17, size = 24, normalized size = 0.77 \begin {gather*} \frac {5\,{\mathrm {e}}^{-\frac {17}{4}}\,\left (3\,{\mathrm {e}}^{5/4}\,x^2+48\,{\mathrm {e}}^{5/4}-1\right )}{x\,\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 26, normalized size = 0.84 \begin {gather*} \frac {15 x e^{\frac {5}{4}} + \frac {-5 + 240 e^{\frac {5}{4}}}{x}}{e^{\frac {17}{4}} \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________