Optimal. Leaf size=25 \[ 5+x \log (x)+\frac {1}{4} \log \left (\frac {5}{x}-e^x x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5-20 x-20 x \log (x)+e^x x \left (2 x^2+5 x^3+4 x^3 \log (x)\right )}{-20 x+4 e^x x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5+20 x+20 x \log (x)-e^x x \left (2 x^2+5 x^3+4 x^3 \log (x)\right )}{4 x \left (5-e^x x^3\right )} \, dx\\ &=\frac {1}{4} \int \frac {-5+20 x+20 x \log (x)-e^x x \left (2 x^2+5 x^3+4 x^3 \log (x)\right )}{x \left (5-e^x x^3\right )} \, dx\\ &=\frac {1}{4} \int \left (\frac {5 (3+x)}{x \left (-5+e^x x^3\right )}+\frac {2+5 x+4 x \log (x)}{x}\right ) \, dx\\ &=\frac {1}{4} \int \frac {2+5 x+4 x \log (x)}{x} \, dx+\frac {5}{4} \int \frac {3+x}{x \left (-5+e^x x^3\right )} \, dx\\ &=\frac {1}{4} \int \left (\frac {2+5 x}{x}+4 \log (x)\right ) \, dx+\frac {5}{4} \int \left (\frac {1}{-5+e^x x^3}+\frac {3}{x \left (-5+e^x x^3\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {2+5 x}{x} \, dx+\frac {5}{4} \int \frac {1}{-5+e^x x^3} \, dx+\frac {15}{4} \int \frac {1}{x \left (-5+e^x x^3\right )} \, dx+\int \log (x) \, dx\\ &=-x+x \log (x)+\frac {1}{4} \int \left (5+\frac {2}{x}\right ) \, dx+\frac {5}{4} \int \frac {1}{-5+e^x x^3} \, dx+\frac {15}{4} \int \frac {1}{x \left (-5+e^x x^3\right )} \, dx\\ &=\frac {x}{4}+\frac {\log (x)}{2}+x \log (x)+\frac {5}{4} \int \frac {1}{-5+e^x x^3} \, dx+\frac {15}{4} \int \frac {1}{x \left (-5+e^x x^3\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 25, normalized size = 1.00 \begin {gather*} \frac {1}{4} \left (-\log (x)+4 x \log (x)+\log \left (5-e^x x^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 28, normalized size = 1.12 \begin {gather*} \frac {1}{4} \, {\left (4 \, x + 1\right )} \log \relax (x) + \frac {1}{4} \, \log \left (\frac {x^{2} e^{\left (x + \log \relax (x)\right )} - 5}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 20, normalized size = 0.80 \begin {gather*} x \log \relax (x) + \frac {1}{4} \, \log \left (x^{3} e^{x} - 5\right ) - \frac {1}{4} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.92
method | result | size |
risch | \(x \ln \relax (x )+\frac {\ln \relax (x )}{4}+\frac {\ln \left ({\mathrm e}^{x} x -\frac {5}{x^{2}}\right )}{4}\) | \(23\) |
norman | \(x \ln \relax (x )-\frac {\ln \relax (x )}{4}+\frac {\ln \left (x^{2} {\mathrm e}^{x +\ln \relax (x )}-5\right )}{4}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.83, size = 25, normalized size = 1.00 \begin {gather*} \frac {1}{2} \, {\left (2 \, x + 1\right )} \log \relax (x) + \frac {1}{4} \, \log \left (\frac {x^{3} e^{x} - 5}{x^{3}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 26, normalized size = 1.04 \begin {gather*} \frac {\ln \left (\frac {1}{x^2}\right )}{4}+\frac {\ln \left (x^3\,{\mathrm {e}}^x-5\right )}{4}+\frac {\ln \relax (x)}{4}+x\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 20, normalized size = 0.80 \begin {gather*} x \log {\relax (x )} + \frac {\log {\relax (x )}}{2} + \frac {\log {\left (e^{x} - \frac {5}{x^{3}} \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________