Optimal. Leaf size=29 \[ -x+\frac {1}{5} \left (-x+x^2\right )^{x \left (-x+\frac {x^2}{400}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2000-2000 x+\left (-x+x^2\right )^{\frac {1}{400} \left (-400 x^2+x^3\right )} \left (400 x-801 x^2+2 x^3+\left (800 x-803 x^2+3 x^3\right ) \log \left (-x+x^2\right )\right )}{-2000+2000 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+\frac {x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \left (-400+801 x-2 x^2-800 \log ((-1+x) x)+803 x \log ((-1+x) x)-3 x^2 \log ((-1+x) x)\right )}{2000 (1-x)}\right ) \, dx\\ &=-x+\frac {\int \frac {x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \left (-400+801 x-2 x^2-800 \log ((-1+x) x)+803 x \log ((-1+x) x)-3 x^2 \log ((-1+x) x)\right )}{1-x} \, dx}{2000}\\ &=-x+\frac {\int \left (\frac {x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \left (400-801 x+2 x^2\right )}{-1+x}+x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} (-800+3 x) \log ((-1+x) x)\right ) \, dx}{2000}\\ &=-x+\frac {\int \frac {x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \left (400-801 x+2 x^2\right )}{-1+x} \, dx}{2000}+\frac {\int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} (-800+3 x) \log ((-1+x) x) \, dx}{2000}\\ &=-x+\frac {\int \left (-399 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2}-\frac {399 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2}}{-1+x}-799 x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2}+2 x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2}\right ) \, dx}{2000}-\frac {\int \frac {(-1+2 x) \left (-800 \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx+3 \int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx\right )}{(-1+x) x} \, dx}{2000}+\frac {(3 \log ((-1+x) x)) \int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}-\frac {1}{5} (2 \log ((-1+x) x)) \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx\\ &=-x-\frac {\int \left (-\frac {800 (-1+2 x) \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{(-1+x) x}+\frac {3 (-1+2 x) \int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{(-1+x) x}\right ) \, dx}{2000}+\frac {\int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{1000}-\frac {399 \int ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}-\frac {399 \int \frac {((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2}}{-1+x} \, dx}{2000}-\frac {799 \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}+\frac {(3 \log ((-1+x) x)) \int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}-\frac {1}{5} (2 \log ((-1+x) x)) \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx\\ &=-x+\frac {\int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{1000}-\frac {3 \int \frac {(-1+2 x) \int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{(-1+x) x} \, dx}{2000}-\frac {399 \int ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}-\frac {399 \int \frac {((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2}}{-1+x} \, dx}{2000}-\frac {799 \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}+\frac {2}{5} \int \frac {(-1+2 x) \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{(-1+x) x} \, dx+\frac {(3 \log ((-1+x) x)) \int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}-\frac {1}{5} (2 \log ((-1+x) x)) \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx\\ &=-x+\frac {\int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{1000}-\frac {3 \int \left (\frac {\int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{-1+x}+\frac {\int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{x}\right ) \, dx}{2000}-\frac {399 \int ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}-\frac {399 \int \frac {((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2}}{-1+x} \, dx}{2000}-\frac {799 \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}+\frac {2}{5} \int \left (\frac {\int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{-1+x}+\frac {\int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{x}\right ) \, dx+\frac {(3 \log ((-1+x) x)) \int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}-\frac {1}{5} (2 \log ((-1+x) x)) \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx\\ &=-x+\frac {\int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{1000}-\frac {3 \int \frac {\int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{-1+x} \, dx}{2000}-\frac {3 \int \frac {\int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{x} \, dx}{2000}-\frac {399 \int ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}-\frac {399 \int \frac {((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2}}{-1+x} \, dx}{2000}-\frac {799 \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}+\frac {2}{5} \int \frac {\int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{-1+x} \, dx+\frac {2}{5} \int \frac {\int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{x} \, dx+\frac {(3 \log ((-1+x) x)) \int x^2 ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx}{2000}-\frac {1}{5} (2 \log ((-1+x) x)) \int x ((-1+x) x)^{\left (-1+\frac {x}{400}\right ) x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 26, normalized size = 0.90 \begin {gather*} \frac {-2000 x+400 ((-1+x) x)^{\frac {1}{400} (-400+x) x^2}}{2000} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 25, normalized size = 0.86 \begin {gather*} \frac {1}{5} \, {\left (x^{2} - x\right )}^{\frac {1}{400} \, x^{3} - x^{2}} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{3} - 801 \, x^{2} + {\left (3 \, x^{3} - 803 \, x^{2} + 800 \, x\right )} \log \left (x^{2} - x\right ) + 400 \, x\right )} {\left (x^{2} - x\right )}^{\frac {1}{400} \, x^{3} - x^{2}} - 2000 \, x + 2000}{2000 \, {\left (x - 1\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 23, normalized size = 0.79
method | result | size |
risch | \(-x +\frac {\left (x^{2}-x \right )^{\frac {x^{2} \left (x -400\right )}{400}}}{5}\) | \(23\) |
default | \(-x +\frac {{\mathrm e}^{\frac {\left (x^{3}-400 x^{2}\right ) \ln \left (x^{2}-x \right )}{400}}}{5}\) | \(27\) |
norman | \(-x +\frac {{\mathrm e}^{\frac {\left (x^{3}-400 x^{2}\right ) \ln \left (x^{2}-x \right )}{400}}}{5}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 40, normalized size = 1.38 \begin {gather*} -x + \frac {1}{5} \, e^{\left (\frac {1}{400} \, x^{3} \log \left (x - 1\right ) + \frac {1}{400} \, x^{3} \log \relax (x) - x^{2} \log \left (x - 1\right ) - x^{2} \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.50, size = 33, normalized size = 1.14 \begin {gather*} \frac {{\mathrm {e}}^{\frac {x^3\,\ln \left (x^2-x\right )}{400}}}{5\,{\left (x^2-x\right )}^{x^2}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 19, normalized size = 0.66 \begin {gather*} - x + \frac {e^{\left (\frac {x^{3}}{400} - x^{2}\right ) \log {\left (x^{2} - x \right )}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________