Optimal. Leaf size=29 \[ \frac {3+\frac {1}{5} e^x \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 8.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^x+\left (-45-3 e^x\right ) \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right )+\left (-15-e^x\right ) \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right )+\left (e^x (-3+3 x) \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right )+e^x (-1+x) \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right ) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{15 x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right )+5 x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15-e^x+\frac {2 e^x}{\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )}+e^x (-1+x) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{5 x^2} \, dx\\ &=\frac {1}{5} \int \frac {-15-e^x+\frac {2 e^x}{\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )}+e^x (-1+x) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {15}{x^2}+\frac {e^x \left (2-3 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right )-\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right )-3 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )+3 x \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )-\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right ) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )+x \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right ) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )\right )}{x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )}\right ) \, dx\\ &=\frac {3}{x}+\frac {1}{5} \int \frac {e^x \left (2-3 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right )-\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right )-3 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )+3 x \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )-\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right ) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )+x \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right ) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )\right )}{x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )} \, dx\\ &=\frac {3}{x}+\frac {1}{5} \int \frac {e^x \left (-1+\frac {2}{\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )}+(-1+x) \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )\right )}{x^2} \, dx\\ &=\frac {3}{x}+\frac {1}{5} \int \left (\frac {e^x \left (2-3 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right )-\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )}{x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )}+\frac {e^x (-1+x) \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x^2}\right ) \, dx\\ &=\frac {3}{x}+\frac {1}{5} \int \frac {e^x \left (2-3 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right )-\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )}{x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )} \, dx+\frac {1}{5} \int \frac {e^x (-1+x) \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x^2} \, dx\\ &=\frac {3}{x}+\frac {1}{5} \int \frac {e^x \left (-1+\frac {2}{\log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )}\right )}{x^2} \, dx+\frac {1}{5} \int \left (-\frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x^2}+\frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x}\right ) \, dx\\ &=\frac {3}{x}+\frac {1}{5} \int \left (-\frac {e^x}{x^2}+\frac {2 e^x}{x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )}\right ) \, dx-\frac {1}{5} \int \frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x^2} \, dx+\frac {1}{5} \int \frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x} \, dx\\ &=\frac {3}{x}-\frac {1}{5} \int \frac {e^x}{x^2} \, dx-\frac {1}{5} \int \frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x^2} \, dx+\frac {1}{5} \int \frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x} \, dx+\frac {2}{5} \int \frac {e^x}{x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )} \, dx\\ &=\frac {3}{x}+\frac {e^x}{5 x}-\frac {1}{5} \int \frac {e^x}{x} \, dx-\frac {1}{5} \int \frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x^2} \, dx+\frac {1}{5} \int \frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x} \, dx+\frac {2}{5} \int \frac {e^x}{x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )} \, dx\\ &=\frac {3}{x}+\frac {e^x}{5 x}-\frac {\text {Ei}(x)}{5}-\frac {1}{5} \int \frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x^2} \, dx+\frac {1}{5} \int \frac {e^x \log \left (\frac {3}{x}+\frac {\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{x} \, dx+\frac {2}{5} \int \frac {e^x}{x^2 \log (x) \log (\log (x)) \log \left (144 \log ^2(\log (x))\right ) \left (3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.36, size = 29, normalized size = 1.00 \begin {gather*} \frac {15+e^x \log \left (\frac {3+\log \left (\log \left (144 \log ^2(\log (x))\right )\right )}{x}\right )}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 26, normalized size = 0.90 \begin {gather*} \frac {e^{x} \log \left (\frac {\log \left (\log \left (144 \, \log \left (\log \relax (x)\right )^{2}\right )\right ) + 3}{x}\right ) + 15}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.81, size = 28, normalized size = 0.97 \begin {gather*} -\frac {e^{x} \log \relax (x) - e^{x} \log \left (\log \left (\log \left (144 \, \log \left (\log \relax (x)\right )^{2}\right )\right ) + 3\right ) - 15}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.43, size = 443, normalized size = 15.28
method | result | size |
risch | \(\frac {{\mathrm e}^{x} \ln \left (\ln \left (2 \ln \relax (3)+4 \ln \relax (2)+2 \ln \left (\ln \left (\ln \relax (x )\right )\right )-\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )+\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )\right )^{2}}{2}\right )+3\right )}{5 x}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \left (2 \ln \left (12\right )+2 \ln \left (\ln \left (\ln \relax (x )\right )\right )-\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )+\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )\right )^{2}}{2}\right )+3\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2 \ln \left (12\right )+2 \ln \left (\ln \left (\ln \relax (x )\right )\right )-\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )+\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )\right )^{2}}{2}\right )+3\right )}{x}\right ) {\mathrm e}^{x}-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2 \ln \left (12\right )+2 \ln \left (\ln \left (\ln \relax (x )\right )\right )-\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )+\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )\right )^{2}}{2}\right )+3\right )}{x}\right )^{2} {\mathrm e}^{x}-i \pi \,\mathrm {csgn}\left (i \left (\ln \left (2 \ln \left (12\right )+2 \ln \left (\ln \left (\ln \relax (x )\right )\right )-\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )+\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )\right )^{2}}{2}\right )+3\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2 \ln \left (12\right )+2 \ln \left (\ln \left (\ln \relax (x )\right )\right )-\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )+\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )\right )^{2}}{2}\right )+3\right )}{x}\right )^{2} {\mathrm e}^{x}+i \pi \mathrm {csgn}\left (\frac {i \left (\ln \left (2 \ln \left (12\right )+2 \ln \left (\ln \left (\ln \relax (x )\right )\right )-\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right ) \left (-\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )^{2}\right )+\mathrm {csgn}\left (i \ln \left (\ln \relax (x )\right )\right )\right )^{2}}{2}\right )+3\right )}{x}\right )^{3} {\mathrm e}^{x}+2 \,{\mathrm e}^{x} \ln \relax (x )-30}{10 x}\) | \(443\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.43, size = 33, normalized size = 1.14 \begin {gather*} -\frac {e^{x} \log \relax (x) - e^{x} \log \left (\log \relax (2) + \log \left (\log \relax (3) + 2 \, \log \relax (2) + \log \left (\log \left (\log \relax (x)\right )\right )\right ) + 3\right ) - 15}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {2\,{\mathrm {e}}^x+\ln \left (\frac {\ln \left (\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\right )+3}{x}\right )\,\left (\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^x\,\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\,\ln \relax (x)\,\left (3\,x-3\right )+\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^x\,\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\,\ln \relax (x)\,\ln \left (\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\right )\,\left (x-1\right )\right )-\ln \left (\ln \relax (x)\right )\,\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\,\ln \relax (x)\,\left (3\,{\mathrm {e}}^x+45\right )-\ln \left (\ln \relax (x)\right )\,\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\,\ln \relax (x)\,\ln \left (\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\right )\,\left ({\mathrm {e}}^x+15\right )}{15\,x^2\,\ln \left (\ln \relax (x)\right )\,\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\,\ln \relax (x)+5\,x^2\,\ln \left (\ln \relax (x)\right )\,\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\,\ln \relax (x)\,\ln \left (\ln \left (144\,{\ln \left (\ln \relax (x)\right )}^2\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________