Optimal. Leaf size=16 \[ \frac {2 e^{-19+x} \log (5) \log (x)}{5+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.87, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 8, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.157, Rules used = {12, 1594, 27, 6688, 6742, 2178, 2197, 2554} \begin {gather*} \frac {2 e^{x-19} \log (5) \log (x)}{x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 2178
Rule 2197
Rule 2554
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{1+x} (10+2 x) \log (5)+e^{1+x} \left (8 x+2 x^2\right ) \log (5) \log (x)}{25 x+10 x^2+x^3} \, dx}{e^{20}}\\ &=\frac {\int \frac {e^{1+x} (10+2 x) \log (5)+e^{1+x} \left (8 x+2 x^2\right ) \log (5) \log (x)}{x \left (25+10 x+x^2\right )} \, dx}{e^{20}}\\ &=\frac {\int \frac {e^{1+x} (10+2 x) \log (5)+e^{1+x} \left (8 x+2 x^2\right ) \log (5) \log (x)}{x (5+x)^2} \, dx}{e^{20}}\\ &=\frac {\int \frac {2 e^{1+x} \log (5) (5+x+x (4+x) \log (x))}{x (5+x)^2} \, dx}{e^{20}}\\ &=\frac {(2 \log (5)) \int \frac {e^{1+x} (5+x+x (4+x) \log (x))}{x (5+x)^2} \, dx}{e^{20}}\\ &=\frac {(2 \log (5)) \int \left (\frac {e^{1+x}}{x (5+x)}+\frac {e^{1+x} (4+x) \log (x)}{(5+x)^2}\right ) \, dx}{e^{20}}\\ &=\frac {(2 \log (5)) \int \frac {e^{1+x}}{x (5+x)} \, dx}{e^{20}}+\frac {(2 \log (5)) \int \frac {e^{1+x} (4+x) \log (x)}{(5+x)^2} \, dx}{e^{20}}\\ &=\frac {2 e^{-19+x} \log (5) \log (x)}{5+x}-\frac {(2 \log (5)) \int \frac {e^{1+x}}{x (5+x)} \, dx}{e^{20}}+\frac {(2 \log (5)) \int \left (\frac {e^{1+x}}{5 x}-\frac {e^{1+x}}{5 (5+x)}\right ) \, dx}{e^{20}}\\ &=\frac {2 e^{-19+x} \log (5) \log (x)}{5+x}+\frac {(2 \log (5)) \int \frac {e^{1+x}}{x} \, dx}{5 e^{20}}-\frac {(2 \log (5)) \int \frac {e^{1+x}}{5+x} \, dx}{5 e^{20}}-\frac {(2 \log (5)) \int \left (\frac {e^{1+x}}{5 x}-\frac {e^{1+x}}{5 (5+x)}\right ) \, dx}{e^{20}}\\ &=\frac {2 \text {Ei}(x) \log (5)}{5 e^{19}}-\frac {2 \text {Ei}(5+x) \log (5)}{5 e^{24}}+\frac {2 e^{-19+x} \log (5) \log (x)}{5+x}-\frac {(2 \log (5)) \int \frac {e^{1+x}}{x} \, dx}{5 e^{20}}+\frac {(2 \log (5)) \int \frac {e^{1+x}}{5+x} \, dx}{5 e^{20}}\\ &=\frac {2 e^{-19+x} \log (5) \log (x)}{5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 16, normalized size = 1.00 \begin {gather*} \frac {2 e^{-19+x} \log (5) \log (x)}{5+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 15, normalized size = 0.94 \begin {gather*} \frac {2 \, e^{\left (x - 19\right )} \log \relax (5) \log \relax (x)}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 15, normalized size = 0.94 \begin {gather*} \frac {2 \, e^{\left (x - 19\right )} \log \relax (5) \log \relax (x)}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 16, normalized size = 1.00
method | result | size |
risch | \(\frac {2 \ln \relax (5) \ln \relax (x ) {\mathrm e}^{x -19}}{5+x}\) | \(16\) |
norman | \(\frac {2 \ln \relax (x ) {\mathrm e}^{x +1} {\mathrm e}^{-20} \ln \relax (5)}{5+x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 15, normalized size = 0.94 \begin {gather*} \frac {2 \, e^{\left (x - 19\right )} \log \relax (5) \log \relax (x)}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.47, size = 29, normalized size = 1.81 \begin {gather*} \frac {2\,x^2\,\mathrm {e}\,{\mathrm {e}}^x\,\ln \relax (5)\,\ln \relax (x)}{{\mathrm {e}}^{20}\,x^3+5\,{\mathrm {e}}^{20}\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 22, normalized size = 1.38 \begin {gather*} \frac {2 e^{x + 1} \log {\relax (5 )} \log {\relax (x )}}{x e^{20} + 5 e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________