Optimal. Leaf size=26 \[ 9-\frac {-x+\log \left (5 x^2\right )}{4 \left (5+e^x\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 1.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10+e^x \left (-2-x^2\right )+\left (5+e^x (1+x)\right ) \log \left (5 x^2\right )}{100 x^2+40 e^x x^2+4 e^{2 x} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10+e^x \left (-2-x^2\right )+\left (5+e^x (1+x)\right ) \log \left (5 x^2\right )}{4 \left (5+e^x\right )^2 x^2} \, dx\\ &=\frac {1}{4} \int \frac {-10+e^x \left (-2-x^2\right )+\left (5+e^x (1+x)\right ) \log \left (5 x^2\right )}{\left (5+e^x\right )^2 x^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {5 \left (x-\log \left (5 x^2\right )\right )}{\left (5+e^x\right )^2 x}-\frac {2+x^2-\log \left (5 x^2\right )-x \log \left (5 x^2\right )}{\left (5+e^x\right ) x^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {2+x^2-\log \left (5 x^2\right )-x \log \left (5 x^2\right )}{\left (5+e^x\right ) x^2} \, dx\right )+\frac {5}{4} \int \frac {x-\log \left (5 x^2\right )}{\left (5+e^x\right )^2 x} \, dx\\ &=-\left (\frac {1}{4} \int \frac {2+x^2-(1+x) \log \left (5 x^2\right )}{\left (5+e^x\right ) x^2} \, dx\right )+\frac {5}{4} \int \left (\frac {1}{\left (5+e^x\right )^2}-\frac {\log \left (5 x^2\right )}{\left (5+e^x\right )^2 x}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \left (\frac {1}{5+e^x}+\frac {2}{\left (5+e^x\right ) x^2}-\frac {\log \left (5 x^2\right )}{\left (5+e^x\right ) x^2}-\frac {\log \left (5 x^2\right )}{\left (5+e^x\right ) x}\right ) \, dx\right )+\frac {5}{4} \int \frac {1}{\left (5+e^x\right )^2} \, dx-\frac {5}{4} \int \frac {\log \left (5 x^2\right )}{\left (5+e^x\right )^2 x} \, dx\\ &=-\left (\frac {1}{4} \int \frac {1}{5+e^x} \, dx\right )+\frac {1}{4} \int \frac {\log \left (5 x^2\right )}{\left (5+e^x\right ) x^2} \, dx+\frac {1}{4} \int \frac {\log \left (5 x^2\right )}{\left (5+e^x\right ) x} \, dx-\frac {1}{2} \int \frac {1}{\left (5+e^x\right ) x^2} \, dx+\frac {5}{4} \int \frac {2 \int \frac {1}{\left (5+e^x\right )^2 x} \, dx}{x} \, dx+\frac {5}{4} \operatorname {Subst}\left (\int \frac {1}{x (5+x)^2} \, dx,x,e^x\right )-\frac {1}{4} \left (5 \log \left (5 x^2\right )\right ) \int \frac {1}{\left (5+e^x\right )^2 x} \, dx\\ &=-\left (\frac {1}{4} \int \frac {2 \int \frac {1}{\left (5+e^x\right ) x^2} \, dx}{x} \, dx\right )-\frac {1}{4} \int \frac {2 \int \frac {1}{5 x+e^x x} \, dx}{x} \, dx-\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{x (5+x)} \, dx,x,e^x\right )-\frac {1}{2} \int \frac {1}{\left (5+e^x\right ) x^2} \, dx+\frac {5}{4} \operatorname {Subst}\left (\int \left (\frac {1}{25 x}-\frac {1}{5 (5+x)^2}-\frac {1}{25 (5+x)}\right ) \, dx,x,e^x\right )+\frac {5}{2} \int \frac {\int \frac {1}{\left (5+e^x\right )^2 x} \, dx}{x} \, dx+\frac {1}{4} \log \left (5 x^2\right ) \int \frac {1}{\left (5+e^x\right ) x^2} \, dx+\frac {1}{4} \log \left (5 x^2\right ) \int \frac {1}{\left (5+e^x\right ) x} \, dx-\frac {1}{4} \left (5 \log \left (5 x^2\right )\right ) \int \frac {1}{\left (5+e^x\right )^2 x} \, dx\\ &=\frac {1}{4 \left (5+e^x\right )}+\frac {x}{20}-\frac {1}{20} \log \left (5+e^x\right )-\frac {1}{20} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+\frac {1}{20} \operatorname {Subst}\left (\int \frac {1}{5+x} \, dx,x,e^x\right )-\frac {1}{2} \int \frac {1}{\left (5+e^x\right ) x^2} \, dx-\frac {1}{2} \int \frac {\int \frac {1}{\left (5+e^x\right ) x^2} \, dx}{x} \, dx-\frac {1}{2} \int \frac {\int \frac {1}{5 x+e^x x} \, dx}{x} \, dx+\frac {5}{2} \int \frac {\int \frac {1}{\left (5+e^x\right )^2 x} \, dx}{x} \, dx+\frac {1}{4} \log \left (5 x^2\right ) \int \frac {1}{\left (5+e^x\right ) x^2} \, dx+\frac {1}{4} \log \left (5 x^2\right ) \int \frac {1}{\left (5+e^x\right ) x} \, dx-\frac {1}{4} \left (5 \log \left (5 x^2\right )\right ) \int \frac {1}{\left (5+e^x\right )^2 x} \, dx\\ &=\frac {1}{4 \left (5+e^x\right )}-\frac {1}{2} \int \frac {1}{\left (5+e^x\right ) x^2} \, dx-\frac {1}{2} \int \frac {\int \frac {1}{\left (5+e^x\right ) x^2} \, dx}{x} \, dx-\frac {1}{2} \int \frac {\int \frac {1}{5 x+e^x x} \, dx}{x} \, dx+\frac {5}{2} \int \frac {\int \frac {1}{\left (5+e^x\right )^2 x} \, dx}{x} \, dx+\frac {1}{4} \log \left (5 x^2\right ) \int \frac {1}{\left (5+e^x\right ) x^2} \, dx+\frac {1}{4} \log \left (5 x^2\right ) \int \frac {1}{\left (5+e^x\right ) x} \, dx-\frac {1}{4} \left (5 \log \left (5 x^2\right )\right ) \int \frac {1}{\left (5+e^x\right )^2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 25, normalized size = 0.96 \begin {gather*} \frac {x-\log \left (5 x^2\right )}{4 \left (5 x+e^x x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 22, normalized size = 0.85 \begin {gather*} \frac {x - \log \left (5 \, x^{2}\right )}{4 \, {\left (x e^{x} + 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 22, normalized size = 0.85 \begin {gather*} \frac {x - \log \left (5 \, x^{2}\right )}{4 \, {\left (x e^{x} + 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 22, normalized size = 0.85
method | result | size |
default | \(\frac {x -\ln \left (5 x^{2}\right )}{4 x \left ({\mathrm e}^{x}+5\right )}\) | \(22\) |
norman | \(\frac {\frac {x}{4}-\frac {\ln \left (5 x^{2}\right )}{4}}{\left ({\mathrm e}^{x}+5\right ) x}\) | \(23\) |
risch | \(-\frac {\ln \relax (x )}{2 x \left ({\mathrm e}^{x}+5\right )}-\frac {-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 \ln \relax (5)-2 x}{8 x \left ({\mathrm e}^{x}+5\right )}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 22, normalized size = 0.85 \begin {gather*} \frac {x - \log \relax (5) - 2 \, \log \relax (x)}{4 \, {\left (x e^{x} + 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 21, normalized size = 0.81 \begin {gather*} \frac {x-\ln \left (5\,x^2\right )}{4\,x\,\left ({\mathrm {e}}^x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 17, normalized size = 0.65 \begin {gather*} \frac {x - \log {\left (5 x^{2} \right )}}{4 x e^{x} + 20 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________