Optimal. Leaf size=19 \[ 11+e^x+\log \left (\left (\left (16+\frac {5}{x}\right )^2+x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.46, antiderivative size = 24, normalized size of antiderivative = 1.26, number of steps used = 7, number of rules used = 4, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {6741, 6742, 2194, 1587} \begin {gather*} 2 \log \left (x^3+256 x^2+160 x+25\right )+e^x-4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2194
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-100-320 x+2 x^3+e^x \left (25 x+160 x^2+256 x^3+x^4\right )}{x \left (25+160 x+256 x^2+x^3\right )} \, dx\\ &=\int \left (e^x+\frac {2 \left (-50-160 x+x^3\right )}{x \left (25+160 x+256 x^2+x^3\right )}\right ) \, dx\\ &=2 \int \frac {-50-160 x+x^3}{x \left (25+160 x+256 x^2+x^3\right )} \, dx+\int e^x \, dx\\ &=e^x+2 \int \left (-\frac {2}{x}+\frac {160+512 x+3 x^2}{25+160 x+256 x^2+x^3}\right ) \, dx\\ &=e^x-4 \log (x)+2 \int \frac {160+512 x+3 x^2}{25+160 x+256 x^2+x^3} \, dx\\ &=e^x-4 \log (x)+2 \log \left (25+160 x+256 x^2+x^3\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 24, normalized size = 1.26 \begin {gather*} e^x-4 \log (x)+2 \log \left (25+160 x+256 x^2+x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 23, normalized size = 1.21 \begin {gather*} e^{x} + 2 \, \log \left (x^{3} + 256 \, x^{2} + 160 \, x + 25\right ) - 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 23, normalized size = 1.21 \begin {gather*} e^{x} + 2 \, \log \left (x^{3} + 256 \, x^{2} + 160 \, x + 25\right ) - 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 1.26
method | result | size |
norman | \({\mathrm e}^{x}-4 \ln \relax (x )+2 \ln \left (x^{3}+256 x^{2}+160 x +25\right )\) | \(24\) |
risch | \({\mathrm e}^{x}-4 \ln \relax (x )+2 \ln \left (x^{3}+256 x^{2}+160 x +25\right )\) | \(24\) |
default | \({\mathrm e}^{x}+\left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+256 \textit {\_Z}^{2}+160 \textit {\_Z} +25\right )}{\sum }\frac {\left (256 \textit {\_R1}^{2}+160 \textit {\_R1} +25\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -x +\textit {\_R1} \right )}{3 \textit {\_R1}^{2}+512 \textit {\_R1} +160}\right )-4 \ln \relax (x )-4 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+256 \textit {\_Z}^{2}+160 \textit {\_Z} +25\right )}{\sum }\frac {\left (-\textit {\_R}^{2}-256 \textit {\_R} -160\right ) \ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+512 \textit {\_R} +160}\right )-320 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+256 \textit {\_Z}^{2}+160 \textit {\_Z} +25\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+512 \textit {\_R} +160}\right )+2 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+256 \textit {\_Z}^{2}+160 \textit {\_Z} +25\right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+512 \textit {\_R} +160}\right )-25 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+256 \textit {\_Z}^{2}+160 \textit {\_Z} +25\right )}{\sum }\frac {{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -x +\textit {\_R1} \right )}{3 \textit {\_R1}^{2}+512 \textit {\_R1} +160}\right )-160 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+256 \textit {\_Z}^{2}+160 \textit {\_Z} +25\right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -x +\textit {\_R1} \right )}{3 \textit {\_R1}^{2}+512 \textit {\_R1} +160}\right )-256 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+256 \textit {\_Z}^{2}+160 \textit {\_Z} +25\right )}{\sum }\frac {\textit {\_R1}^{2} {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -x +\textit {\_R1} \right )}{3 \textit {\_R1}^{2}+512 \textit {\_R1} +160}\right )\) | \(311\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 23, normalized size = 1.21 \begin {gather*} e^{x} + 2 \, \log \left (x^{3} + 256 \, x^{2} + 160 \, x + 25\right ) - 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 23, normalized size = 1.21 \begin {gather*} 2\,\ln \left (x^3+256\,x^2+160\,x+25\right )+{\mathrm {e}}^x-4\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 1.26 \begin {gather*} e^{x} - 4 \log {\relax (x )} + 2 \log {\left (x^{3} + 256 x^{2} + 160 x + 25 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________