Optimal. Leaf size=23 \[ x \log \left ((-2+x)^2 x+\frac {9}{2} (3-x) x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 18, normalized size of antiderivative = 0.78, number of steps used = 13, number of rules used = 5, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {6728, 1657, 632, 31, 2523} \begin {gather*} x \log \left (\frac {1}{2} x \left (-7 x^2+19 x+8\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 632
Rule 1657
Rule 2523
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-8-38 x+21 x^2}{-8-19 x+7 x^2}+\log \left (\frac {1}{2} x \left (8+19 x-7 x^2\right )\right )\right ) \, dx\\ &=\int \frac {-8-38 x+21 x^2}{-8-19 x+7 x^2} \, dx+\int \log \left (\frac {1}{2} x \left (8+19 x-7 x^2\right )\right ) \, dx\\ &=x \log \left (\frac {1}{2} x \left (8+19 x-7 x^2\right )\right )-\int \frac {8+38 x-21 x^2}{8+19 x-7 x^2} \, dx+\int \left (3+\frac {16+19 x}{-8-19 x+7 x^2}\right ) \, dx\\ &=3 x+x \log \left (\frac {1}{2} x \left (8+19 x-7 x^2\right )\right )+\int \frac {16+19 x}{-8-19 x+7 x^2} \, dx-\int \left (3-\frac {16+19 x}{8+19 x-7 x^2}\right ) \, dx\\ &=x \log \left (\frac {1}{2} x \left (8+19 x-7 x^2\right )\right )-\frac {1}{2} \left (-19+3 \sqrt {65}\right ) \int \frac {1}{-\frac {19}{2}+\frac {3 \sqrt {65}}{2}+7 x} \, dx+\frac {1}{2} \left (19+3 \sqrt {65}\right ) \int \frac {1}{-\frac {19}{2}-\frac {3 \sqrt {65}}{2}+7 x} \, dx+\int \frac {16+19 x}{8+19 x-7 x^2} \, dx\\ &=\frac {1}{14} \left (19-3 \sqrt {65}\right ) \log \left (19-3 \sqrt {65}-14 x\right )+\frac {1}{14} \left (19+3 \sqrt {65}\right ) \log \left (19+3 \sqrt {65}-14 x\right )+x \log \left (\frac {1}{2} x \left (8+19 x-7 x^2\right )\right )-\frac {1}{2} \left (-19-3 \sqrt {65}\right ) \int \frac {1}{\frac {19}{2}+\frac {3 \sqrt {65}}{2}-7 x} \, dx+\frac {1}{2} \left (19-3 \sqrt {65}\right ) \int \frac {1}{\frac {19}{2}-\frac {3 \sqrt {65}}{2}-7 x} \, dx\\ &=x \log \left (\frac {1}{2} x \left (8+19 x-7 x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 18, normalized size = 0.78 \begin {gather*} x \log \left (\frac {1}{2} x \left (8+19 x-7 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.20, size = 17, normalized size = 0.74 \begin {gather*} x \log \left (-\frac {7}{2} \, x^{3} + \frac {19}{2} \, x^{2} + 4 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 17, normalized size = 0.74 \begin {gather*} x \log \left (-\frac {7}{2} \, x^{3} + \frac {19}{2} \, x^{2} + 4 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 18, normalized size = 0.78
method | result | size |
norman | \(\ln \left (-\frac {7}{2} x^{3}+\frac {19}{2} x^{2}+4 x \right ) x\) | \(18\) |
risch | \(\ln \left (-\frac {7}{2} x^{3}+\frac {19}{2} x^{2}+4 x \right ) x\) | \(18\) |
default | \(-x \ln \relax (2)+x \ln \left (-7 x^{3}+19 x^{2}+8 x \right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.05, size = 46, normalized size = 2.00 \begin {gather*} -x {\left (\log \relax (2) + 3\right )} + \frac {1}{14} \, {\left (14 \, x - 19\right )} \log \left (-7 \, x^{2} + 19 \, x + 8\right ) + x \log \relax (x) + 3 \, x + \frac {19}{14} \, \log \left (7 \, x^{2} - 19 \, x - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 17, normalized size = 0.74 \begin {gather*} x\,\ln \left (-\frac {7\,x^3}{2}+\frac {19\,x^2}{2}+4\,x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 0.83 \begin {gather*} x \log {\left (- \frac {7 x^{3}}{2} + \frac {19 x^{2}}{2} + 4 x \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________