Optimal. Leaf size=26 \[ 5+x-\frac {1+x+\frac {e^{x^2}}{9 \log (4)}}{-2+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 43, normalized size of antiderivative = 1.65, number of steps used = 8, number of rules used = 5, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.106, Rules used = {12, 27, 6742, 2288, 683} \begin {gather*} \frac {e^{x^2} \left (2 x-x^2\right )}{9 (2-x)^2 x \log (4)}+x+\frac {3}{2-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 683
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{x^2} \left (1+4 x-2 x^2\right )+\left (63-36 x+9 x^2\right ) \log (4)}{36-36 x+9 x^2} \, dx}{\log (4)}\\ &=\frac {\int \frac {e^{x^2} \left (1+4 x-2 x^2\right )+\left (63-36 x+9 x^2\right ) \log (4)}{9 (-2+x)^2} \, dx}{\log (4)}\\ &=\frac {\int \frac {e^{x^2} \left (1+4 x-2 x^2\right )+\left (63-36 x+9 x^2\right ) \log (4)}{(-2+x)^2} \, dx}{9 \log (4)}\\ &=\frac {\int \left (-\frac {e^{x^2} \left (-1-4 x+2 x^2\right )}{(-2+x)^2}+\frac {9 \left (7-4 x+x^2\right ) \log (4)}{(-2+x)^2}\right ) \, dx}{9 \log (4)}\\ &=-\frac {\int \frac {e^{x^2} \left (-1-4 x+2 x^2\right )}{(-2+x)^2} \, dx}{9 \log (4)}+\int \frac {7-4 x+x^2}{(-2+x)^2} \, dx\\ &=\frac {e^{x^2} \left (2 x-x^2\right )}{9 (2-x)^2 x \log (4)}+\int \left (1+\frac {3}{(-2+x)^2}\right ) \, dx\\ &=\frac {3}{2-x}+x+\frac {e^{x^2} \left (2 x-x^2\right )}{9 (2-x)^2 x \log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 33, normalized size = 1.27 \begin {gather*} \frac {-e^{x^2}+9 \left (-3-2 x+x^2\right ) \log (4)}{9 (-2+x) \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.65, size = 30, normalized size = 1.15 \begin {gather*} \frac {18 \, {\left (x^{2} - 2 \, x - 3\right )} \log \relax (2) - e^{\left (x^{2}\right )}}{18 \, {\left (x - 2\right )} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 34, normalized size = 1.31 \begin {gather*} \frac {18 \, x^{2} \log \relax (2) - 36 \, x \log \relax (2) - e^{\left (x^{2}\right )} - 54 \, \log \relax (2)}{18 \, {\left (x - 2\right )} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.45, size = 22, normalized size = 0.85
method | result | size |
norman | \(\frac {x^{2}-\frac {{\mathrm e}^{x^{2}}}{18 \ln \relax (2)}-7}{x -2}\) | \(22\) |
risch | \(x -\frac {3}{x -2}-\frac {{\mathrm e}^{x^{2}}}{18 \ln \relax (2) \left (x -2\right )}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 64, normalized size = 2.46 \begin {gather*} \frac {18 \, {\left (x - \frac {4}{x - 2} + 4 \, \log \left (x - 2\right )\right )} \log \relax (2) + 72 \, {\left (\frac {2}{x - 2} - \log \left (x - 2\right )\right )} \log \relax (2) - \frac {e^{\left (x^{2}\right )}}{x - 2} - \frac {126 \, \log \relax (2)}{x - 2}}{18 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 22, normalized size = 0.85 \begin {gather*} x-\frac {\frac {{\mathrm {e}}^{x^2}}{18}+\ln \relax (8)}{\ln \relax (2)\,\left (x-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 22, normalized size = 0.85 \begin {gather*} x - \frac {e^{x^{2}}}{18 x \log {\relax (2 )} - 36 \log {\relax (2 )}} - \frac {3}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________