Optimal. Leaf size=32 \[ \log \left (\frac {1}{3} \left (\frac {i \pi +\log \left (\frac {25}{4}\right )}{3-x}+\frac {\log \left (x^2\right )}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {18-12 x+2 x^2+x^2 \left (i \pi +\log \left (\frac {25}{4}\right )\right )+\left (-9+6 x-x^2\right ) \log \left (x^2\right )}{\left (3 x^2-x^3\right ) \left (i \pi +\log \left (\frac {25}{4}\right )\right )+\left (9 x-6 x^2+x^3\right ) \log \left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18-12 x+x^2 \left (2+i \pi +\log \left (\frac {25}{4}\right )\right )+\left (-9+6 x-x^2\right ) \log \left (x^2\right )}{\left (3 x^2-x^3\right ) \left (i \pi +\log \left (\frac {25}{4}\right )\right )+\left (9 x-6 x^2+x^3\right ) \log \left (x^2\right )} \, dx\\ &=\int \frac {18-12 x+x^2 \left (2+i \pi +\log \left (\frac {25}{4}\right )\right )+\left (-9+6 x-x^2\right ) \log \left (x^2\right )}{(3-x) x \left (i \pi x \left (1-\frac {i \log \left (\frac {25}{4}\right )}{\pi }\right )+3 \log \left (x^2\right )-x \log \left (x^2\right )\right )} \, dx\\ &=\int \left (-\frac {1}{x}+\frac {i \left (-18-2 x^2+3 x \left (4-i \pi -\log \left (\frac {25}{4}\right )\right )\right )}{(3-x) x \left (\pi x \left (1-\frac {i \log \left (\frac {25}{4}\right )}{\pi }\right )-3 i \log \left (x^2\right )+i x \log \left (x^2\right )\right )}\right ) \, dx\\ &=-\log (x)+i \int \frac {-18-2 x^2+3 x \left (4-i \pi -\log \left (\frac {25}{4}\right )\right )}{(3-x) x \left (\pi x \left (1-\frac {i \log \left (\frac {25}{4}\right )}{\pi }\right )-3 i \log \left (x^2\right )+i x \log \left (x^2\right )\right )} \, dx\\ &=-\log (x)+i \int \frac {-18-2 x^2+3 x \left (4-i \pi -\log \left (\frac {25}{4}\right )\right )}{(3-x) x \left (x \left (\pi -i \log \left (\frac {25}{4}\right )\right )+i (-3+x) \log \left (x^2\right )\right )} \, dx\\ &=-\log (x)+i \int \left (\frac {6}{x \left (-\pi x \left (1-\frac {i \log \left (\frac {25}{4}\right )}{\pi }\right )+3 i \log \left (x^2\right )-i x \log \left (x^2\right )\right )}+\frac {2}{\pi x \left (1-\frac {i \log \left (\frac {25}{4}\right )}{\pi }\right )-3 i \log \left (x^2\right )+i x \log \left (x^2\right )}+\frac {3 \left (-i \pi -\log \left (\frac {25}{4}\right )\right )}{(3-x) \left (\pi x \left (1-\frac {i \log \left (\frac {25}{4}\right )}{\pi }\right )-3 i \log \left (x^2\right )+i x \log \left (x^2\right )\right )}\right ) \, dx\\ &=-\log (x)+2 i \int \frac {1}{\pi x \left (1-\frac {i \log \left (\frac {25}{4}\right )}{\pi }\right )-3 i \log \left (x^2\right )+i x \log \left (x^2\right )} \, dx+6 i \int \frac {1}{x \left (-\pi x \left (1-\frac {i \log \left (\frac {25}{4}\right )}{\pi }\right )+3 i \log \left (x^2\right )-i x \log \left (x^2\right )\right )} \, dx+\left (3 \left (\pi -i \log \left (\frac {25}{4}\right )\right )\right ) \int \frac {1}{(3-x) \left (\pi x \left (1-\frac {i \log \left (\frac {25}{4}\right )}{\pi }\right )-3 i \log \left (x^2\right )+i x \log \left (x^2\right )\right )} \, dx\\ &=-\log (x)+2 i \int \frac {1}{x \left (\pi -i \log \left (\frac {25}{4}\right )\right )+i (-3+x) \log \left (x^2\right )} \, dx+6 i \int \frac {1}{x \left (-x \left (\pi -i \log \left (\frac {25}{4}\right )\right )-i (-3+x) \log \left (x^2\right )\right )} \, dx+\left (3 \left (\pi -i \log \left (\frac {25}{4}\right )\right )\right ) \int \frac {1}{(3-x) \left (x \left (\pi -i \log \left (\frac {25}{4}\right )\right )+i (-3+x) \log \left (x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.40, size = 121, normalized size = 3.78 \begin {gather*} -i \tan ^{-1}\left (\frac {\pi x}{-x \log \left (\frac {25}{4}\right )-3 \log \left (x^2\right )+x \log \left (x^2\right )}\right )-\frac {1}{2} \log \left ((3-x)^2\right )-\log (x)+\frac {1}{2} \log \left (\pi ^2 x^2+x^2 \log ^2\left (\frac {25}{4}\right )+6 x \log \left (\frac {25}{4}\right ) \log \left (x^2\right )-2 x^2 \log \left (\frac {25}{4}\right ) \log \left (x^2\right )+9 \log ^2\left (x^2\right )-6 x \log ^2\left (x^2\right )+x^2 \log ^2\left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 32, normalized size = 1.00 \begin {gather*} -\frac {1}{2} \, \log \left (x^{2}\right ) + \log \left (\frac {-i \, \pi x - x \log \left (\frac {25}{4}\right ) + {\left (x - 3\right )} \log \left (x^{2}\right )}{x - 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 39, normalized size = 1.22 \begin {gather*} \log \left (\pi x - 2 i \, x \log \relax (5) + 2 i \, x \log \relax (2) + i \, x \log \left (x^{2}\right ) - 3 i \, \log \left (x^{2}\right )\right ) - \log \left (x - 3\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 33, normalized size = 1.03
method | result | size |
risch | \(-\ln \relax (x )+\ln \left (\ln \left (x^{2}\right )-\frac {x \left (2 \ln \relax (5)-2 \ln \relax (2)+i \pi \right )}{x -3}\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 35, normalized size = 1.09 \begin {gather*} -\log \relax (x) + \log \left (\frac {{\left (-i \, \pi - 2 \, \log \relax (5) + 2 \, \log \relax (2)\right )} x + 2 \, {\left (x - 3\right )} \log \relax (x)}{2 \, {\left (x - 3\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {2\,x^2-\ln \left (x^2\right )\,\left (x^2-6\,x+9\right )+x^2\,\left (\ln \left (\frac {25}{4}\right )+\Pi \,1{}\mathrm {i}\right )-12\,x+18}{\left (\ln \left (\frac {25}{4}\right )+\Pi \,1{}\mathrm {i}\right )\,\left (3\,x^2-x^3\right )+\ln \left (x^2\right )\,\left (x^3-6\,x^2+9\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________