Optimal. Leaf size=18 \[ \log \left (e^{\frac {3 x}{3-x^2}}+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 17.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9-6 x^2+x^4+e^{-\frac {3 x}{-3+x^2}} \left (9 x+3 x^3\right )}{e^{-\frac {3 x}{-3+x^2}} \left (9 x-6 x^3+x^5\right )+\left (9 x-6 x^3+x^5\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {3 x}{-3+x^2}} \left (9-6 x^2+x^4+e^{-\frac {3 x}{-3+x^2}} \left (9 x+3 x^3\right )\right )}{x \left (3-x^2\right )^2 \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx\\ &=\int \frac {e^{\frac {3 x}{-3+x^2}} \left (-3+x^2\right )^2+3 x \left (3+x^2\right )}{\left (3-x^2\right )^2 \left (x+e^{\frac {3 x}{-3+x^2}} x \log (x)\right )} \, dx\\ &=\int \left (\frac {1}{x \log (x)}-\frac {9-6 x^2+x^4-9 x \log (x)-3 x^3 \log (x)}{x \left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}\right ) \, dx\\ &=\int \frac {1}{x \log (x)} \, dx-\int \frac {9-6 x^2+x^4-9 x \log (x)-3 x^3 \log (x)}{x \left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx\\ &=-\int \left (\frac {9-6 x^2+x^4-9 x \log (x)-3 x^3 \log (x)}{9 x \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}+\frac {x \left (9-6 x^2+x^4-9 x \log (x)-3 x^3 \log (x)\right )}{3 \left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}-\frac {x \left (9-6 x^2+x^4-9 x \log (x)-3 x^3 \log (x)\right )}{9 \left (-3+x^2\right ) \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}\right ) \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=\log (\log (x))-\frac {1}{9} \int \frac {9-6 x^2+x^4-9 x \log (x)-3 x^3 \log (x)}{x \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx+\frac {1}{9} \int \frac {x \left (9-6 x^2+x^4-9 x \log (x)-3 x^3 \log (x)\right )}{\left (-3+x^2\right ) \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx-\frac {1}{3} \int \frac {x \left (9-6 x^2+x^4-9 x \log (x)-3 x^3 \log (x)\right )}{\left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx\\ &=\log (\log (x))-\frac {1}{9} \int \left (-\frac {9}{1+e^{\frac {3 x}{-3+x^2}} \log (x)}-\frac {3 x^2}{1+e^{\frac {3 x}{-3+x^2}} \log (x)}+\frac {9}{x \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}-\frac {6 x}{\log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}+\frac {x^3}{\log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}\right ) \, dx+\frac {1}{9} \int \left (-\frac {9 x^2}{\left (-3+x^2\right ) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}-\frac {3 x^4}{\left (-3+x^2\right ) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}+\frac {9 x}{\left (-3+x^2\right ) \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}-\frac {6 x^3}{\left (-3+x^2\right ) \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}+\frac {x^5}{\left (-3+x^2\right ) \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}\right ) \, dx-\frac {1}{3} \int \left (-\frac {9 x^2}{\left (-3+x^2\right )^2 \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}-\frac {3 x^4}{\left (-3+x^2\right )^2 \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}+\frac {9 x}{\left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}-\frac {6 x^3}{\left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}+\frac {x^5}{\left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )}\right ) \, dx\\ &=\log (\log (x))-\frac {1}{9} \int \frac {x^3}{\log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx+\frac {1}{9} \int \frac {x^5}{\left (-3+x^2\right ) \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx+\frac {1}{3} \int \frac {x^2}{1+e^{\frac {3 x}{-3+x^2}} \log (x)} \, dx-\frac {1}{3} \int \frac {x^4}{\left (-3+x^2\right ) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx-\frac {1}{3} \int \frac {x^5}{\left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx+\frac {2}{3} \int \frac {x}{\log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx-\frac {2}{3} \int \frac {x^3}{\left (-3+x^2\right ) \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx+2 \int \frac {x^3}{\left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx+3 \int \frac {x^2}{\left (-3+x^2\right )^2 \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx-3 \int \frac {x}{\left (-3+x^2\right )^2 \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx+\int \frac {1}{1+e^{\frac {3 x}{-3+x^2}} \log (x)} \, dx+\int \frac {x^4}{\left (-3+x^2\right )^2 \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx-\int \frac {x^2}{\left (-3+x^2\right ) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx-\int \frac {1}{x \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx+\int \frac {x}{\left (-3+x^2\right ) \log (x) \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 1.55, size = 55, normalized size = 3.06 \begin {gather*} \frac {1}{2} \sqrt {3} \log \left (\sqrt {3}-x\right )-\frac {1}{2} \sqrt {3} \log \left (\sqrt {3}+x\right )+\log \left (1+e^{\frac {3 x}{-3+x^2}} \log (x)\right ) \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 15, normalized size = 0.83 \begin {gather*} \log \left (e^{\left (-\frac {3 \, x}{x^{2} - 3}\right )} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 15, normalized size = 0.83 \begin {gather*} \log \left (e^{\left (-\frac {3 \, x}{x^{2} - 3}\right )} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 16, normalized size = 0.89
method | result | size |
risch | \(\ln \left (\ln \relax (x )+{\mathrm e}^{-\frac {3 x}{x^{2}-3}}\right )\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 36, normalized size = 2.00 \begin {gather*} -\frac {3 \, x}{x^{2} - 3} + \log \left (\frac {e^{\left (\frac {3 \, x}{x^{2} - 3}\right )} \log \relax (x) + 1}{\log \relax (x)}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.46, size = 15, normalized size = 0.83 \begin {gather*} \ln \left ({\mathrm {e}}^{-\frac {3\,x}{x^2-3}}+\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 15, normalized size = 0.83 \begin {gather*} \log {\left (\log {\relax (x )} + e^{- \frac {3 x}{x^{2} - 3}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________