Optimal. Leaf size=19 \[ \frac {e^{12}}{-1-\frac {1+\frac {1}{e^5}}{x}+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 27, normalized size of antiderivative = 1.42, number of steps used = 5, number of rules used = 4, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.066, Rules used = {12, 1680, 1814, 8} \begin {gather*} -\frac {4 e^{17} x}{-e^5 (1-2 x)^2+5 e^5+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{12} \int \frac {-e^5+e^{10} \left (-1-x^2\right )}{1+e^5 \left (2+2 x-2 x^2\right )+e^{10} \left (1+2 x-x^2-2 x^3+x^4\right )} \, dx\\ &=e^{12} \operatorname {Subst}\left (\int \frac {4 e^5 \left (-4-5 e^5-4 e^5 x-4 e^5 x^2\right )}{\left (4+5 e^5-4 e^5 x^2\right )^2} \, dx,x,-\frac {1}{2}+x\right )\\ &=\left (4 e^{17}\right ) \operatorname {Subst}\left (\int \frac {-4-5 e^5-4 e^5 x-4 e^5 x^2}{\left (4+5 e^5-4 e^5 x^2\right )^2} \, dx,x,-\frac {1}{2}+x\right )\\ &=-\frac {4 e^{17} x}{4+5 e^5-e^5 (1-2 x)^2}-\frac {\left (2 e^{17}\right ) \operatorname {Subst}\left (\int 0 \, dx,x,-\frac {1}{2}+x\right )}{4+5 e^5}\\ &=-\frac {4 e^{17} x}{4+5 e^5-e^5 (1-2 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 1.16 \begin {gather*} -\frac {e^{17} x}{1+e^5 \left (1+x-x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 19, normalized size = 1.00 \begin {gather*} \frac {x e^{17}}{{\left (x^{2} - x - 1\right )} e^{5} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (x^{2} + 1\right )} e^{10} + e^{5}\right )} e^{12}}{{\left (x^{4} - 2 \, x^{3} - x^{2} + 2 \, x + 1\right )} e^{10} - 2 \, {\left (x^{2} - x - 1\right )} e^{5} + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 24, normalized size = 1.26
method | result | size |
gosper | \(\frac {{\mathrm e}^{17} x}{x^{2} {\mathrm e}^{5}-x \,{\mathrm e}^{5}-{\mathrm e}^{5}-1}\) | \(24\) |
risch | \(\frac {{\mathrm e}^{17} x}{x^{2} {\mathrm e}^{5}-x \,{\mathrm e}^{5}-{\mathrm e}^{5}-1}\) | \(24\) |
norman | \(\frac {{\mathrm e}^{5} x \,{\mathrm e}^{12}}{x^{2} {\mathrm e}^{5}-x \,{\mathrm e}^{5}-{\mathrm e}^{5}-1}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 23, normalized size = 1.21 \begin {gather*} \frac {x e^{17}}{x^{2} e^{5} - x e^{5} - e^{5} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.39, size = 22, normalized size = 1.16 \begin {gather*} -\frac {x\,{\mathrm {e}}^{17}}{-{\mathrm {e}}^5\,x^2+{\mathrm {e}}^5\,x+{\mathrm {e}}^5+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 20, normalized size = 1.05 \begin {gather*} \frac {x e^{17}}{x^{2} e^{5} - x e^{5} - e^{5} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________