Optimal. Leaf size=31 \[ -1-x^2+\log \left (-2+x^2 \log ^2\left (9-\frac {2 x+x^4}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-28 x+4 x^4+6 x^4 \log \left (7-x^3\right )+\left (-14 x+14 x^3+2 x^4-2 x^6\right ) \log ^2\left (7-x^3\right )}{14-2 x^3+\left (-7 x^2+x^5\right ) \log ^2\left (7-x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-28 x+4 x^4+6 x^4 \log \left (7-x^3\right )+\left (-14 x+14 x^3+2 x^4-2 x^6\right ) \log ^2\left (7-x^3\right )}{\left (7-x^3\right ) \left (2-x^2 \log ^2\left (7-x^3\right )\right )} \, dx\\ &=\int \left (-\frac {2 \left (-1+x^2\right )}{x}+\frac {2 \left (-14+2 x^3+3 x^5 \log \left (7-x^3\right )\right )}{x \left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-1+x^2}{x} \, dx\right )+2 \int \frac {-14+2 x^3+3 x^5 \log \left (7-x^3\right )}{x \left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx\\ &=-\left (2 \int \left (-\frac {1}{x}+x\right ) \, dx\right )+2 \int \left (\frac {14-2 x^3-3 x^5 \log \left (7-x^3\right )}{7 x \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}+\frac {x^2 \left (-14+2 x^3+3 x^5 \log \left (7-x^3\right )\right )}{7 \left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}\right ) \, dx\\ &=-x^2+2 \log (x)+\frac {2}{7} \int \frac {14-2 x^3-3 x^5 \log \left (7-x^3\right )}{x \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+\frac {2}{7} \int \frac {x^2 \left (-14+2 x^3+3 x^5 \log \left (7-x^3\right )\right )}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx\\ &=-x^2+2 \log (x)+\frac {2}{7} \int \left (\frac {14}{x \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}-\frac {2 x^2}{-2+x^2 \log ^2\left (7-x^3\right )}-\frac {3 x^4 \log \left (7-x^3\right )}{-2+x^2 \log ^2\left (7-x^3\right )}\right ) \, dx+\frac {2}{7} \int \left (-\frac {14 x^2}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}+\frac {2 x^5}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}+\frac {3 x^7 \log \left (7-x^3\right )}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}\right ) \, dx\\ &=-x^2+2 \log (x)-\frac {4}{7} \int \frac {x^2}{-2+x^2 \log ^2\left (7-x^3\right )} \, dx+\frac {4}{7} \int \frac {x^5}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx-\frac {6}{7} \int \frac {x^4 \log \left (7-x^3\right )}{-2+x^2 \log ^2\left (7-x^3\right )} \, dx+\frac {6}{7} \int \frac {x^7 \log \left (7-x^3\right )}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+4 \int \frac {1}{x \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx-4 \int \frac {x^2}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx\\ &=-x^2+2 \log (x)-\frac {4}{7} \int \frac {x^2}{-2+x^2 \log ^2\left (7-x^3\right )} \, dx+\frac {4}{7} \int \left (\frac {x^2}{-2+x^2 \log ^2\left (7-x^3\right )}+\frac {7 x^2}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}\right ) \, dx-\frac {6}{7} \int \frac {x^4 \log \left (7-x^3\right )}{-2+x^2 \log ^2\left (7-x^3\right )} \, dx+\frac {6}{7} \int \left (\frac {7 x \log \left (7-x^3\right )}{-2+x^2 \log ^2\left (7-x^3\right )}+\frac {x^4 \log \left (7-x^3\right )}{-2+x^2 \log ^2\left (7-x^3\right )}+\frac {49 x \log \left (7-x^3\right )}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}\right ) \, dx+4 \int \frac {1}{x \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx-4 \int \left (-\frac {1}{3 \left (-\sqrt [3]{-7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}-\frac {1}{3 \left (\sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}-\frac {1}{3 \left ((-1)^{2/3} \sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}\right ) \, dx\\ &=-x^2+2 \log (x)+\frac {4}{3} \int \frac {1}{\left (-\sqrt [3]{-7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+\frac {4}{3} \int \frac {1}{\left (\sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+\frac {4}{3} \int \frac {1}{\left ((-1)^{2/3} \sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+4 \int \frac {1}{x \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+4 \int \frac {x^2}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+6 \int \frac {x \log \left (7-x^3\right )}{-2+x^2 \log ^2\left (7-x^3\right )} \, dx+42 \int \frac {x \log \left (7-x^3\right )}{\left (-7+x^3\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx\\ &=-x^2+2 \log (x)+\frac {4}{3} \int \frac {1}{\left (-\sqrt [3]{-7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+\frac {4}{3} \int \frac {1}{\left (\sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+\frac {4}{3} \int \frac {1}{\left ((-1)^{2/3} \sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+4 \int \frac {1}{x \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+4 \int \left (-\frac {1}{3 \left (-\sqrt [3]{-7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}-\frac {1}{3 \left (\sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}-\frac {1}{3 \left ((-1)^{2/3} \sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}\right ) \, dx+6 \int \frac {x \log \left (7-x^3\right )}{-2+x^2 \log ^2\left (7-x^3\right )} \, dx+42 \int \left (-\frac {\log \left (7-x^3\right )}{3 \sqrt [3]{7} \left (\sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}-\frac {(-1)^{2/3} \log \left (7-x^3\right )}{3 \sqrt [3]{7} \left (\sqrt [3]{7}+\sqrt [3]{-1} x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}+\frac {\sqrt [3]{-\frac {1}{7}} \log \left (7-x^3\right )}{3 \left (\sqrt [3]{7}-(-1)^{2/3} x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )}\right ) \, dx\\ &=-x^2+2 \log (x)+4 \int \frac {1}{x \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+6 \int \frac {x \log \left (7-x^3\right )}{-2+x^2 \log ^2\left (7-x^3\right )} \, dx-\left (2 (-7)^{2/3}\right ) \int \frac {\log \left (7-x^3\right )}{\left (\sqrt [3]{7}+\sqrt [3]{-1} x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx-\left (2\ 7^{2/3}\right ) \int \frac {\log \left (7-x^3\right )}{\left (\sqrt [3]{7}-x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx+\left (2 \sqrt [3]{-1} 7^{2/3}\right ) \int \frac {\log \left (7-x^3\right )}{\left (\sqrt [3]{7}-(-1)^{2/3} x\right ) \left (-2+x^2 \log ^2\left (7-x^3\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 32, normalized size = 1.03 \begin {gather*} 2 \left (-\frac {x^2}{2}+\frac {1}{2} \log \left (2-x^2 \log ^2\left (7-x^3\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 31, normalized size = 1.00 \begin {gather*} -x^{2} + 2 \, \log \relax (x) + \log \left (\frac {x^{2} \log \left (-x^{3} + 7\right )^{2} - 2}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 23, normalized size = 0.74 \begin {gather*} -x^{2} + \log \left (x^{2} \log \left (-x^{3} + 7\right )^{2} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 0.77
method | result | size |
norman | \(-x^{2}+\ln \left (\ln \left (-x^{3}+7\right )^{2} x^{2}-2\right )\) | \(24\) |
risch | \(-x^{2}+2 \ln \relax (x )+\ln \left (\ln \left (-x^{3}+7\right )^{2}-\frac {2}{x^{2}}\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 31, normalized size = 1.00 \begin {gather*} -x^{2} + 2 \, \log \relax (x) + \log \left (\frac {x^{2} \log \left (-x^{3} + 7\right )^{2} - 2}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.41, size = 31, normalized size = 1.00 \begin {gather*} \ln \left (\frac {x^2\,{\ln \left (7-x^3\right )}^2-2}{x^2}\right )+2\,\ln \relax (x)-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 22, normalized size = 0.71 \begin {gather*} - x^{2} + 2 \log {\relax (x )} + \log {\left (\log {\left (7 - x^{3} \right )}^{2} - \frac {2}{x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________