Optimal. Leaf size=22 \[ 2+e^5-2 x-x \left (\frac {60}{2-x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 18, normalized size of antiderivative = 0.82, number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {27, 1850} \begin {gather*} -x^2-2 x-\frac {120}{2-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-128+6 x^2-2 x^3}{(-2+x)^2} \, dx\\ &=\int \left (-2-\frac {120}{(-2+x)^2}-2 x\right ) \, dx\\ &=-\frac {120}{2-x}-2 x-x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.86 \begin {gather*} -\frac {2 \left (104+12 x-x^3\right )}{4-2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 15, normalized size = 0.68 \begin {gather*} -\frac {x^{3} - 4 \, x - 120}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 16, normalized size = 0.73 \begin {gather*} -x^{2} - 2 \, x + \frac {120}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 13, normalized size = 0.59
method | result | size |
gosper | \(-\frac {x^{3}-128}{x -2}\) | \(13\) |
norman | \(\frac {-x^{3}+128}{x -2}\) | \(14\) |
default | \(-x^{2}-2 x +\frac {120}{x -2}\) | \(17\) |
risch | \(-x^{2}-2 x +\frac {120}{x -2}\) | \(17\) |
meijerg | \(-\frac {32 x}{1-\frac {x}{2}}-\frac {x \left (-\frac {1}{2} x^{2}-3 x +12\right )}{1-\frac {x}{2}}+\frac {2 x \left (-\frac {3 x}{2}+6\right )}{1-\frac {x}{2}}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 16, normalized size = 0.73 \begin {gather*} -x^{2} - 2 \, x + \frac {120}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 16, normalized size = 0.73 \begin {gather*} \frac {-x^3+4\,x+120}{x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 10, normalized size = 0.45 \begin {gather*} - x^{2} - 2 x + \frac {120}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________