Optimal. Leaf size=18 \[ \frac {1}{6} \left (e^x+e^{-4 x^2}\right ) x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 25, normalized size of antiderivative = 1.39, number of steps used = 13, number of rules used = 7, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {12, 6742, 2209, 2212, 2196, 2176, 2194} \begin {gather*} \frac {e^x x^2}{6}+\frac {1}{6} e^{-4 x^2} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rule 2209
Rule 2212
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{6} \int e^{-4 x^2} \left (2 x-8 x^3+e^{x+4 x^2} \left (2 x+x^2\right )\right ) \, dx\\ &=\frac {1}{6} \int \left (2 e^{-4 x^2} x-8 e^{-4 x^2} x^3+e^x x (2+x)\right ) \, dx\\ &=\frac {1}{6} \int e^x x (2+x) \, dx+\frac {1}{3} \int e^{-4 x^2} x \, dx-\frac {4}{3} \int e^{-4 x^2} x^3 \, dx\\ &=-\frac {1}{24} e^{-4 x^2}+\frac {1}{6} e^{-4 x^2} x^2+\frac {1}{6} \int \left (2 e^x x+e^x x^2\right ) \, dx-\frac {1}{3} \int e^{-4 x^2} x \, dx\\ &=\frac {1}{6} e^{-4 x^2} x^2+\frac {1}{6} \int e^x x^2 \, dx+\frac {1}{3} \int e^x x \, dx\\ &=\frac {e^x x}{3}+\frac {e^x x^2}{6}+\frac {1}{6} e^{-4 x^2} x^2-\frac {\int e^x \, dx}{3}-\frac {1}{3} \int e^x x \, dx\\ &=-\frac {e^x}{3}+\frac {e^x x^2}{6}+\frac {1}{6} e^{-4 x^2} x^2+\frac {\int e^x \, dx}{3}\\ &=\frac {e^x x^2}{6}+\frac {1}{6} e^{-4 x^2} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 18, normalized size = 1.00 \begin {gather*} \frac {1}{6} \left (e^x+e^{-4 x^2}\right ) x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 19, normalized size = 1.06 \begin {gather*} \frac {1}{6} \, x^{2} e^{\left (-4 \, x^{2}\right )} + \frac {1}{6} \, x^{2} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.02, size = 19, normalized size = 1.06 \begin {gather*} \frac {1}{6} \, x^{2} e^{\left (-4 \, x^{2}\right )} + \frac {1}{6} \, x^{2} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 1.11
method | result | size |
default | \(\frac {{\mathrm e}^{x} x^{2}}{6}+\frac {{\mathrm e}^{-4 x^{2}} x^{2}}{6}\) | \(20\) |
risch | \(\frac {{\mathrm e}^{x} x^{2}}{6}+\frac {{\mathrm e}^{-4 x^{2}} x^{2}}{6}\) | \(20\) |
meijerg | \(\frac {\left (3 x^{2}-6 x +6\right ) {\mathrm e}^{x}}{18}-\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{6}+\frac {\left (8 x^{2}+2\right ) {\mathrm e}^{-4 x^{2}}}{48}-\frac {{\mathrm e}^{-4 x^{2}}}{24}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 43, normalized size = 2.39 \begin {gather*} \frac {1}{24} \, {\left (4 \, x^{2} + 1\right )} e^{\left (-4 \, x^{2}\right )} + \frac {1}{6} \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} + \frac {1}{3} \, {\left (x - 1\right )} e^{x} - \frac {1}{24} \, e^{\left (-4 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.27, size = 14, normalized size = 0.78 \begin {gather*} \frac {x^2\,\left ({\mathrm {e}}^{-4\,x^2}+{\mathrm {e}}^x\right )}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 1.06 \begin {gather*} \frac {x^{2} e^{x}}{6} + \frac {x^{2} e^{- 4 x^{2}}}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________