Optimal. Leaf size=28 \[ -e^{-2+\frac {16}{\left (e^x+5 x^2 (-3+3 x)\right )^2}}-x \]
________________________________________________________________________________________
Rubi [F] time = 23.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^{3 x}+3375 x^6-10125 x^7+10125 x^8-3375 x^9+\exp \left (\frac {16-2 e^{2 x}-450 x^4+900 x^5-450 x^6+e^x \left (60 x^2-60 x^3\right )}{e^{2 x}+225 x^4-450 x^5+225 x^6+e^x \left (-30 x^2+30 x^3\right )}\right ) \left (32 e^x-960 x+1440 x^2\right )+e^{2 x} \left (45 x^2-45 x^3\right )+e^x \left (-675 x^4+1350 x^5-675 x^6\right )}{e^{3 x}-3375 x^6+10125 x^7-10125 x^8+3375 x^9+e^{2 x} \left (-45 x^2+45 x^3\right )+e^x \left (675 x^4-1350 x^5+675 x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{3 x}-45 e^{2 x} (-1+x) x^2-675 e^x (-1+x)^2 x^4+3375 x^6-10125 x^7+10125 x^8-3375 x^9+32 \exp \left (-\frac {2 \left (-8+e^{2 x}+30 e^x (-1+x) x^2+225 x^4-450 x^5+225 x^6\right )}{\left (e^x+15 (-1+x) x^2\right )^2}\right ) \left (e^x+15 x (-2+3 x)\right )}{\left (e^x+15 (-1+x) x^2\right )^3} \, dx\\ &=\int \left (-\frac {e^{3 x}}{\left (e^x-15 x^2+15 x^3\right )^3}-\frac {45 e^{2 x} (-1+x) x^2}{\left (e^x-15 x^2+15 x^3\right )^3}-\frac {675 e^x (-1+x)^2 x^4}{\left (e^x-15 x^2+15 x^3\right )^3}+\frac {3375 x^6}{\left (e^x-15 x^2+15 x^3\right )^3}-\frac {10125 x^7}{\left (e^x-15 x^2+15 x^3\right )^3}+\frac {10125 x^8}{\left (e^x-15 x^2+15 x^3\right )^3}-\frac {3375 x^9}{\left (e^x-15 x^2+15 x^3\right )^3}+\frac {32 \exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) \left (e^x-30 x+45 x^2\right )}{\left (e^x-15 x^2+15 x^3\right )^3}\right ) \, dx\\ &=32 \int \frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) \left (e^x-30 x+45 x^2\right )}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-45 \int \frac {e^{2 x} (-1+x) x^2}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-675 \int \frac {e^x (-1+x)^2 x^4}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+3375 \int \frac {x^6}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-3375 \int \frac {x^9}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-10125 \int \frac {x^7}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+10125 \int \frac {x^8}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-\int \frac {e^{3 x}}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx\\ &=32 \int \left (-\frac {15 \exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) x \left (2-4 x+x^2\right )}{\left (e^x-15 x^2+15 x^3\right )^3}+\frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) \, dx-45 \int \left (-\frac {e^{2 x} x^2}{\left (e^x-15 x^2+15 x^3\right )^3}+\frac {e^{2 x} x^3}{\left (e^x-15 x^2+15 x^3\right )^3}\right ) \, dx-675 \int \left (\frac {e^x x^4}{\left (e^x-15 x^2+15 x^3\right )^3}-\frac {2 e^x x^5}{\left (e^x-15 x^2+15 x^3\right )^3}+\frac {e^x x^6}{\left (e^x-15 x^2+15 x^3\right )^3}\right ) \, dx+3375 \int \frac {x^6}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-3375 \int \frac {x^9}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-10125 \int \frac {x^7}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+10125 \int \frac {x^8}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-\int \frac {e^{3 x}}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx\\ &=32 \int \frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right )}{\left (e^x-15 x^2+15 x^3\right )^2} \, dx+45 \int \frac {e^{2 x} x^2}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-45 \int \frac {e^{2 x} x^3}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-480 \int \frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) x \left (2-4 x+x^2\right )}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-675 \int \frac {e^x x^4}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-675 \int \frac {e^x x^6}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+1350 \int \frac {e^x x^5}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+3375 \int \frac {x^6}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-3375 \int \frac {x^9}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-10125 \int \frac {x^7}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+10125 \int \frac {x^8}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-\int \frac {e^{3 x}}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx\\ &=32 \int \frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right )}{\left (e^x-15 x^2+15 x^3\right )^2} \, dx+45 \int \frac {e^{2 x} x^2}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-45 \int \frac {e^{2 x} x^3}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-480 \int \left (\frac {2 \exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) x}{\left (e^x-15 x^2+15 x^3\right )^3}-\frac {4 \exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) x^2}{\left (e^x-15 x^2+15 x^3\right )^3}+\frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) x^3}{\left (e^x-15 x^2+15 x^3\right )^3}\right ) \, dx-675 \int \frac {e^x x^4}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-675 \int \frac {e^x x^6}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+1350 \int \frac {e^x x^5}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+3375 \int \frac {x^6}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-3375 \int \frac {x^9}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-10125 \int \frac {x^7}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+10125 \int \frac {x^8}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-\int \frac {e^{3 x}}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx\\ &=32 \int \frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right )}{\left (e^x-15 x^2+15 x^3\right )^2} \, dx+45 \int \frac {e^{2 x} x^2}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-45 \int \frac {e^{2 x} x^3}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-480 \int \frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) x^3}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-675 \int \frac {e^x x^4}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-675 \int \frac {e^x x^6}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-960 \int \frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) x}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+1350 \int \frac {e^x x^5}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+1920 \int \frac {\exp \left (-\frac {2 \left (-8+e^{2 x}-30 e^x x^2+30 e^x x^3+225 x^4-450 x^5+225 x^6\right )}{\left (e^x-15 x^2+15 x^3\right )^2}\right ) x^2}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+3375 \int \frac {x^6}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-3375 \int \frac {x^9}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-10125 \int \frac {x^7}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx+10125 \int \frac {x^8}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx-\int \frac {e^{3 x}}{\left (e^x-15 x^2+15 x^3\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.66, size = 28, normalized size = 1.00 \begin {gather*} -e^{-2+\frac {16}{\left (e^x-15 x^2+15 x^3\right )^2}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.02, size = 78, normalized size = 2.79 \begin {gather*} -x - e^{\left (-\frac {2 \, {\left (225 \, x^{6} - 450 \, x^{5} + 225 \, x^{4} + 30 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (2 \, x\right )} - 8\right )}}{225 \, x^{6} - 450 \, x^{5} + 225 \, x^{4} + 30 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (2 \, x\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {3375 \, x^{9} - 10125 \, x^{8} + 10125 \, x^{7} - 3375 \, x^{6} + 45 \, {\left (x^{3} - x^{2}\right )} e^{\left (2 \, x\right )} + 675 \, {\left (x^{6} - 2 \, x^{5} + x^{4}\right )} e^{x} - 32 \, {\left (45 \, x^{2} - 30 \, x + e^{x}\right )} e^{\left (-\frac {2 \, {\left (225 \, x^{6} - 450 \, x^{5} + 225 \, x^{4} + 30 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (2 \, x\right )} - 8\right )}}{225 \, x^{6} - 450 \, x^{5} + 225 \, x^{4} + 30 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (2 \, x\right )}}\right )} + e^{\left (3 \, x\right )}}{3375 \, x^{9} - 10125 \, x^{8} + 10125 \, x^{7} - 3375 \, x^{6} + 45 \, {\left (x^{3} - x^{2}\right )} e^{\left (2 \, x\right )} + 675 \, {\left (x^{6} - 2 \, x^{5} + x^{4}\right )} e^{x} + e^{\left (3 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.16, size = 81, normalized size = 2.89
method | result | size |
risch | \(-x -{\mathrm e}^{-\frac {2 \left (225 x^{6}-450 x^{5}+30 \,{\mathrm e}^{x} x^{3}+225 x^{4}-30 \,{\mathrm e}^{x} x^{2}+{\mathrm e}^{2 x}-8\right )}{225 x^{6}-450 x^{5}+30 \,{\mathrm e}^{x} x^{3}+225 x^{4}-30 \,{\mathrm e}^{x} x^{2}+{\mathrm e}^{2 x}}}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.45, size = 173, normalized size = 6.18 \begin {gather*} -{\left (x e^{\left (\frac {2 \, e^{\left (2 \, x\right )}}{225 \, x^{6} - 450 \, x^{5} + 225 \, x^{4} + 30 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (2 \, x\right )}} + 2\right )} + e^{\left (\frac {2 \, e^{\left (2 \, x\right )}}{225 \, x^{6} - 450 \, x^{5} + 225 \, x^{4} + 30 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (2 \, x\right )}} + \frac {16}{225 \, x^{6} - 450 \, x^{5} + 225 \, x^{4} + 30 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (2 \, x\right )}}\right )}\right )} e^{\left (-\frac {2 \, e^{\left (2 \, x\right )}}{225 \, x^{6} - 450 \, x^{5} + 225 \, x^{4} + 30 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (2 \, x\right )}} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.55, size = 302, normalized size = 10.79 \begin {gather*} -x-{\mathrm {e}}^{\frac {60\,x^2\,{\mathrm {e}}^x}{{\mathrm {e}}^{2\,x}-30\,x^2\,{\mathrm {e}}^x+30\,x^3\,{\mathrm {e}}^x+225\,x^4-450\,x^5+225\,x^6}}\,{\mathrm {e}}^{-\frac {60\,x^3\,{\mathrm {e}}^x}{{\mathrm {e}}^{2\,x}-30\,x^2\,{\mathrm {e}}^x+30\,x^3\,{\mathrm {e}}^x+225\,x^4-450\,x^5+225\,x^6}}\,{\mathrm {e}}^{-\frac {450\,x^4}{{\mathrm {e}}^{2\,x}-30\,x^2\,{\mathrm {e}}^x+30\,x^3\,{\mathrm {e}}^x+225\,x^4-450\,x^5+225\,x^6}}\,{\mathrm {e}}^{-\frac {450\,x^6}{{\mathrm {e}}^{2\,x}-30\,x^2\,{\mathrm {e}}^x+30\,x^3\,{\mathrm {e}}^x+225\,x^4-450\,x^5+225\,x^6}}\,{\mathrm {e}}^{\frac {900\,x^5}{{\mathrm {e}}^{2\,x}-30\,x^2\,{\mathrm {e}}^x+30\,x^3\,{\mathrm {e}}^x+225\,x^4-450\,x^5+225\,x^6}}\,{\mathrm {e}}^{\frac {16}{{\mathrm {e}}^{2\,x}-30\,x^2\,{\mathrm {e}}^x+30\,x^3\,{\mathrm {e}}^x+225\,x^4-450\,x^5+225\,x^6}}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^{2\,x}}{{\mathrm {e}}^{2\,x}-30\,x^2\,{\mathrm {e}}^x+30\,x^3\,{\mathrm {e}}^x+225\,x^4-450\,x^5+225\,x^6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.64, size = 75, normalized size = 2.68 \begin {gather*} - x - e^{\frac {- 450 x^{6} + 900 x^{5} - 450 x^{4} + \left (- 60 x^{3} + 60 x^{2}\right ) e^{x} - 2 e^{2 x} + 16}{225 x^{6} - 450 x^{5} + 225 x^{4} + \left (30 x^{3} - 30 x^{2}\right ) e^{x} + e^{2 x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________