Optimal. Leaf size=12 \[ \frac {4 e^x \log (5 x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {6742, 2177, 2178, 2197, 2554} \begin {gather*} \frac {4 e^x \log (5 x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2177
Rule 2178
Rule 2197
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 e^x}{x^2}+\frac {4 e^x (-1+x) \log (5 x)}{x^2}\right ) \, dx\\ &=4 \int \frac {e^x}{x^2} \, dx+4 \int \frac {e^x (-1+x) \log (5 x)}{x^2} \, dx\\ &=-\frac {4 e^x}{x}+\frac {4 e^x \log (5 x)}{x}-4 \int \frac {e^x}{x^2} \, dx+4 \int \frac {e^x}{x} \, dx\\ &=4 \text {Ei}(x)+\frac {4 e^x \log (5 x)}{x}-4 \int \frac {e^x}{x} \, dx\\ &=\frac {4 e^x \log (5 x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 12, normalized size = 1.00 \begin {gather*} \frac {4 e^x \log (5 x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 11, normalized size = 0.92 \begin {gather*} \frac {4 \, e^{x} \log \left (5 \, x\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 11, normalized size = 0.92 \begin {gather*} \frac {4 \, e^{x} \log \left (5 \, x\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 12, normalized size = 1.00
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{x} \ln \left (5 x \right )}{x}\) | \(12\) |
norman | \(\frac {4 \,{\mathrm e}^{x} \ln \left (5 x \right )}{x}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4 \, e^{x} \log \relax (x)}{x} + 4 \, \Gamma \left (-1, -x\right ) + 4 \, \int \frac {{\left (x \log \relax (5) - \log \relax (5) - 1\right )} e^{x}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 11, normalized size = 0.92 \begin {gather*} \frac {4\,\ln \left (5\,x\right )\,{\mathrm {e}}^x}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 10, normalized size = 0.83 \begin {gather*} \frac {4 e^{x} \log {\left (5 x \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________