Optimal. Leaf size=24 \[ 5-3 x-\log \left (e^x \left (-1-e^6-x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 15, normalized size of antiderivative = 0.62, number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1810, 260} \begin {gather*} -\log \left (x^2+e^6+1\right )-4 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 260
Rule 1810
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-4-\frac {2 x}{1+e^6+x^2}\right ) \, dx\\ &=-4 x-2 \int \frac {x}{1+e^6+x^2} \, dx\\ &=-4 x-\log \left (1+e^6+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.79 \begin {gather*} -2 \left (2 x+\frac {1}{2} \log \left (1+e^6+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 14, normalized size = 0.58 \begin {gather*} -4 \, x - \log \left (x^{2} + e^{6} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 14, normalized size = 0.58 \begin {gather*} -4 \, x - \log \left (x^{2} + e^{6} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 15, normalized size = 0.62
method | result | size |
default | \(-4 x -\ln \left ({\mathrm e}^{6}+x^{2}+1\right )\) | \(15\) |
risch | \(-4 x -\ln \left ({\mathrm e}^{6}+x^{2}+1\right )\) | \(15\) |
norman | \(-4 x -\ln \left ({\mathrm e}^{6}+x^{2}+1\right )\) | \(17\) |
meijerg | \(-\frac {4 \,{\mathrm e}^{6} \arctan \left (\frac {x}{\sqrt {1+{\mathrm e}^{6}}}\right )}{\sqrt {1+{\mathrm e}^{6}}}-2 \sqrt {1+{\mathrm e}^{6}}\, \left (\frac {2 x}{\sqrt {1+{\mathrm e}^{6}}}-2 \arctan \left (\frac {x}{\sqrt {1+{\mathrm e}^{6}}}\right )\right )-\ln \left (1+\frac {x^{2}}{1+{\mathrm e}^{6}}\right )-\frac {4 \arctan \left (\frac {x}{\sqrt {1+{\mathrm e}^{6}}}\right )}{\sqrt {1+{\mathrm e}^{6}}}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 14, normalized size = 0.58 \begin {gather*} -4 \, x - \log \left (x^{2} + e^{6} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.25, size = 14, normalized size = 0.58 \begin {gather*} -4\,x-\ln \left (x^2+{\mathrm {e}}^6+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.58 \begin {gather*} - 4 x - \log {\left (x^{2} + 1 + e^{6} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________