Optimal. Leaf size=17 \[ \frac {5-\log (\log (x))}{x-x^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+x+(-5+10 x) \log (x)+(1-2 x) \log (x) \log (\log (x))}{\left (x^2-2 x^3+x^4\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+x+(-5+10 x) \log (x)+(1-2 x) \log (x) \log (\log (x))}{x^2 \left (1-2 x+x^2\right ) \log (x)} \, dx\\ &=\int \frac {-1+x+(-5+10 x) \log (x)+(1-2 x) \log (x) \log (\log (x))}{(-1+x)^2 x^2 \log (x)} \, dx\\ &=\int \left (\frac {-1+x-5 \log (x)+10 x \log (x)}{(-1+x)^2 x^2 \log (x)}-\frac {(-1+2 x) \log (\log (x))}{(-1+x)^2 x^2}\right ) \, dx\\ &=\int \frac {-1+x-5 \log (x)+10 x \log (x)}{(-1+x)^2 x^2 \log (x)} \, dx-\int \frac {(-1+2 x) \log (\log (x))}{(-1+x)^2 x^2} \, dx\\ &=\int \left (\frac {5 (-1+2 x)}{(-1+x)^2 x^2}+\frac {1}{(-1+x) x^2 \log (x)}\right ) \, dx-\int \left (\frac {\log (\log (x))}{(-1+x)^2}-\frac {\log (\log (x))}{x^2}\right ) \, dx\\ &=5 \int \frac {-1+2 x}{(-1+x)^2 x^2} \, dx+\int \frac {1}{(-1+x) x^2 \log (x)} \, dx-\int \frac {\log (\log (x))}{(-1+x)^2} \, dx+\int \frac {\log (\log (x))}{x^2} \, dx\\ &=\frac {5}{(1-x) x}-\frac {\log (\log (x))}{x}+\int \frac {1}{x^2 \log (x)} \, dx+\int \frac {1}{(-1+x) x^2 \log (x)} \, dx-\int \frac {\log (\log (x))}{(-1+x)^2} \, dx\\ &=\frac {5}{(1-x) x}-\frac {\log (\log (x))}{x}+\int \frac {1}{(-1+x) x^2 \log (x)} \, dx-\int \frac {\log (\log (x))}{(-1+x)^2} \, dx+\operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {5}{(1-x) x}+\text {Ei}(-\log (x))-\frac {\log (\log (x))}{x}+\int \frac {1}{(-1+x) x^2 \log (x)} \, dx-\int \frac {\log (\log (x))}{(-1+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 14, normalized size = 0.82 \begin {gather*} \frac {-5+\log (\log (x))}{(-1+x) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 15, normalized size = 0.88 \begin {gather*} \frac {\log \left (\log \relax (x)\right ) - 5}{x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 28, normalized size = 1.65 \begin {gather*} {\left (\frac {1}{x - 1} - \frac {1}{x}\right )} \log \left (\log \relax (x)\right ) - \frac {5}{x - 1} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 1.41
method | result | size |
risch | \(\frac {\ln \left (\ln \relax (x )\right )}{x \left (x -1\right )}-\frac {5}{x \left (x -1\right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 15, normalized size = 0.88 \begin {gather*} \frac {\log \left (\log \relax (x)\right ) - 5}{x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.43, size = 14, normalized size = 0.82 \begin {gather*} \frac {\ln \left (\ln \relax (x)\right )-5}{x\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 15, normalized size = 0.88 \begin {gather*} \frac {\log {\left (\log {\relax (x )} \right )}}{x^{2} - x} - \frac {5}{x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________