Optimal. Leaf size=21 \[ -5+2 x+\log \left (\frac {5+e^2}{x^2}+x-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10+e^2 (2-2 x)-10 x+x^2-x^3-2 x^4+2 x^3 \log (x)}{-5 x-e^2 x-x^4+x^3 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10+e^2 (2-2 x)-10 x+x^2-x^3-2 x^4+2 x^3 \log (x)}{\left (-5-e^2\right ) x-x^4+x^3 \log (x)} \, dx\\ &=\int \left (2+\frac {-2 \left (5+e^2\right )-x^2+x^3}{x \left (5 \left (1+\frac {e^2}{5}\right )+x^3-x^2 \log (x)\right )}\right ) \, dx\\ &=2 x+\int \frac {-2 \left (5+e^2\right )-x^2+x^3}{x \left (5 \left (1+\frac {e^2}{5}\right )+x^3-x^2 \log (x)\right )} \, dx\\ &=2 x+\int \left (\frac {2 \left (-5-e^2\right )}{x \left (5 \left (1+\frac {e^2}{5}\right )+x^3-x^2 \log (x)\right )}+\frac {x^2}{5 \left (1+\frac {e^2}{5}\right )+x^3-x^2 \log (x)}+\frac {x}{-5 \left (1+\frac {e^2}{5}\right )-x^3+x^2 \log (x)}\right ) \, dx\\ &=2 x-\left (2 \left (5+e^2\right )\right ) \int \frac {1}{x \left (5 \left (1+\frac {e^2}{5}\right )+x^3-x^2 \log (x)\right )} \, dx+\int \frac {x^2}{5 \left (1+\frac {e^2}{5}\right )+x^3-x^2 \log (x)} \, dx+\int \frac {x}{-5 \left (1+\frac {e^2}{5}\right )-x^3+x^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 24, normalized size = 1.14 \begin {gather*} 2 x-2 \log (x)+\log \left (5+e^2+x^3-x^2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 24, normalized size = 1.14 \begin {gather*} 2 \, x + \log \left (-\frac {x^{3} - x^{2} \log \relax (x) + e^{2} + 5}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 26, normalized size = 1.24 \begin {gather*} 2 \, x + \log \left (-x^{3} + x^{2} \log \relax (x) - e^{2} - 5\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 1.00
method | result | size |
risch | \(2 x +\ln \left (\ln \relax (x )-\frac {x^{3}+{\mathrm e}^{2}+5}{x^{2}}\right )\) | \(21\) |
norman | \(-2 \ln \relax (x )+2 x +\ln \left (x^{3}-x^{2} \ln \relax (x )+{\mathrm e}^{2}+5\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 24, normalized size = 1.14 \begin {gather*} 2 \, x + \log \left (-\frac {x^{3} - x^{2} \log \relax (x) + e^{2} + 5}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.53, size = 34, normalized size = 1.62 \begin {gather*} \ln \left ({\mathrm {e}}^2-x^2\,\ln \relax (x)+x^3+5\right )-\frac {2\,x^2\,\ln \relax (x)-2\,x^3}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 20, normalized size = 0.95 \begin {gather*} 2 x + \log {\left (\log {\relax (x )} + \frac {- x^{3} - e^{2} - 5}{x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________