Optimal. Leaf size=30 \[ 2+\frac {1}{15} x (3+x) \log \left (\frac {\log (5)}{3 \left (e^{5+x}+\frac {x}{3}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x-x^2+e^{5+x} \left (-9 x-3 x^2\right )+\left (3 x+2 x^2+e^{5+x} (9+6 x)\right ) \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right )}{45 e^{5+x}+15 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{15} \left (-\frac {\left (1+3 e^{5+x}\right ) x (3+x)}{3 e^{5+x}+x}+(3+2 x) \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right )\right ) \, dx\\ &=\frac {1}{15} \int \left (-\frac {\left (1+3 e^{5+x}\right ) x (3+x)}{3 e^{5+x}+x}+(3+2 x) \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right )\right ) \, dx\\ &=-\left (\frac {1}{15} \int \frac {\left (1+3 e^{5+x}\right ) x (3+x)}{3 e^{5+x}+x} \, dx\right )+\frac {1}{15} \int (3+2 x) \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right ) \, dx\\ &=\frac {1}{60} (3+2 x)^2 \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right )+\frac {1}{60} \int \frac {\left (1+3 e^{5+x}\right ) (3+2 x)^2}{3 e^{5+x}+x} \, dx-\frac {1}{15} \int \left (x (3+x)-\frac {x \left (-3+2 x+x^2\right )}{3 e^{5+x}+x}\right ) \, dx\\ &=\frac {1}{60} (3+2 x)^2 \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right )+\frac {1}{60} \int \left ((3+2 x)^2-\frac {(-1+x) (3+2 x)^2}{3 e^{5+x}+x}\right ) \, dx-\frac {1}{15} \int x (3+x) \, dx+\frac {1}{15} \int \frac {x \left (-3+2 x+x^2\right )}{3 e^{5+x}+x} \, dx\\ &=\frac {1}{360} (3+2 x)^3+\frac {1}{60} (3+2 x)^2 \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right )-\frac {1}{60} \int \frac {(-1+x) (3+2 x)^2}{3 e^{5+x}+x} \, dx-\frac {1}{15} \int \left (3 x+x^2\right ) \, dx+\frac {1}{15} \int \left (-\frac {3 x}{3 e^{5+x}+x}+\frac {2 x^2}{3 e^{5+x}+x}+\frac {x^3}{3 e^{5+x}+x}\right ) \, dx\\ &=-\frac {x^2}{10}-\frac {x^3}{45}+\frac {1}{360} (3+2 x)^3+\frac {1}{60} (3+2 x)^2 \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right )-\frac {1}{60} \int \left (-\frac {9}{3 e^{5+x}+x}-\frac {3 x}{3 e^{5+x}+x}+\frac {8 x^2}{3 e^{5+x}+x}+\frac {4 x^3}{3 e^{5+x}+x}\right ) \, dx+\frac {1}{15} \int \frac {x^3}{3 e^{5+x}+x} \, dx+\frac {2}{15} \int \frac {x^2}{3 e^{5+x}+x} \, dx-\frac {1}{5} \int \frac {x}{3 e^{5+x}+x} \, dx\\ &=-\frac {x^2}{10}-\frac {x^3}{45}+\frac {1}{360} (3+2 x)^3+\frac {1}{60} (3+2 x)^2 \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right )+\frac {1}{20} \int \frac {x}{3 e^{5+x}+x} \, dx+\frac {3}{20} \int \frac {1}{3 e^{5+x}+x} \, dx-\frac {1}{5} \int \frac {x}{3 e^{5+x}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 7.46, size = 23, normalized size = 0.77 \begin {gather*} \frac {1}{15} x (3+x) \log \left (\frac {\log (5)}{3 e^{5+x}+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 23, normalized size = 0.77 \begin {gather*} \frac {1}{15} \, {\left (x^{2} + 3 \, x\right )} \log \left (\frac {\log \relax (5)}{x + 3 \, e^{\left (x + 5\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 41, normalized size = 1.37 \begin {gather*} -\frac {1}{15} \, x^{2} \log \left (x + 3 \, e^{\left (x + 5\right )}\right ) + \frac {1}{15} \, x^{2} \log \left (\log \relax (5)\right ) - \frac {1}{5} \, x \log \left (x + 3 \, e^{\left (x + 5\right )}\right ) + \frac {1}{5} \, x \log \left (\log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 35, normalized size = 1.17
method | result | size |
risch | \(\left (-\frac {1}{15} x^{2}-\frac {1}{5} x \right ) \ln \left (3 \,{\mathrm e}^{5+x}+x \right )+\frac {\ln \left (\ln \relax (5)\right ) x^{2}}{15}+\frac {x \ln \left (\ln \relax (5)\right )}{5}\) | \(35\) |
norman | \(\frac {\ln \left (\frac {\ln \relax (5)}{3 \,{\mathrm e}^{5+x}+x}\right ) x}{5}+\frac {\ln \left (\frac {\ln \relax (5)}{3 \,{\mathrm e}^{5+x}+x}\right ) x^{2}}{15}\) | \(38\) |
default | \(\frac {x^{2} \left (\ln \left (\frac {\ln \relax (5)}{3 \,{\mathrm e}^{5+x}+x}\right )+\ln \left (3 \,{\mathrm e}^{5+x}+x \right )\right )}{15}+\frac {x \left (\ln \left (\frac {\ln \relax (5)}{3 \,{\mathrm e}^{5+x}+x}\right )+\ln \left (3 \,{\mathrm e}^{5+x}+x \right )\right )}{5}-\frac {\ln \left (3 \,{\mathrm e}^{5+x}+x \right ) x}{5}-\frac {\ln \left (3 \,{\mathrm e}^{5+x}+x \right ) x^{2}}{15}\) | \(84\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 33, normalized size = 1.10 \begin {gather*} \frac {1}{15} \, x^{2} \log \left (\log \relax (5)\right ) - \frac {1}{15} \, {\left (x^{2} + 3 \, x\right )} \log \left (x + 3 \, e^{\left (x + 5\right )}\right ) + \frac {1}{5} \, x \log \left (\log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.50, size = 25, normalized size = 0.83 \begin {gather*} \left (\frac {x^2}{15}+\frac {x}{5}\right )\,\left (\ln \left (\frac {1}{x+3\,{\mathrm {e}}^5\,{\mathrm {e}}^x}\right )+\ln \left (\ln \relax (5)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 20, normalized size = 0.67 \begin {gather*} \left (\frac {x^{2}}{15} + \frac {x}{5}\right ) \log {\left (\frac {\log {\relax (5 )}}{x + 3 e^{x + 5}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________