Optimal. Leaf size=20 \[ \frac {2+x-4 e^{-2 x} x^2}{5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 31, normalized size of antiderivative = 1.55, number of steps used = 5, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {12, 6688, 2176, 2194} \begin {gather*} \frac {2}{5} e^{-2 x} (1-2 x)-\frac {2 e^{-2 x}}{5}+\frac {2}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{-2 x} \left (-2 e^{2 x}-4 x^2+8 x^3\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {2}{x^2}+e^{-2 x} (-4+8 x)\right ) \, dx\\ &=\frac {2}{5 x}+\frac {1}{5} \int e^{-2 x} (-4+8 x) \, dx\\ &=\frac {2}{5} e^{-2 x} (1-2 x)+\frac {2}{5 x}+\frac {4}{5} \int e^{-2 x} \, dx\\ &=-\frac {2}{5} e^{-2 x}+\frac {2}{5} e^{-2 x} (1-2 x)+\frac {2}{5 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.90 \begin {gather*} \frac {2}{5 x}-\frac {4}{5} e^{-2 x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 21, normalized size = 1.05 \begin {gather*} -\frac {2 \, {\left (2 \, x^{2} - e^{\left (2 \, x\right )}\right )} e^{\left (-2 \, x\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 16, normalized size = 0.80 \begin {gather*} -\frac {2 \, {\left (2 \, x^{2} e^{\left (-2 \, x\right )} - 1\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.70
method | result | size |
default | \(\frac {2}{5 x}-\frac {4 x \,{\mathrm e}^{-2 x}}{5}\) | \(14\) |
risch | \(\frac {2}{5 x}-\frac {4 x \,{\mathrm e}^{-2 x}}{5}\) | \(14\) |
norman | \(\frac {\left (-\frac {4 x^{2}}{5}+\frac {2 \,{\mathrm e}^{2 x}}{5}\right ) {\mathrm e}^{-2 x}}{x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 23, normalized size = 1.15 \begin {gather*} -\frac {2}{5} \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} + \frac {2}{5 \, x} + \frac {2}{5} \, e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 13, normalized size = 0.65 \begin {gather*} \frac {2}{5\,x}-\frac {4\,x\,{\mathrm {e}}^{-2\,x}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.70 \begin {gather*} - \frac {4 x e^{- 2 x}}{5} + \frac {2}{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________