Optimal. Leaf size=18 \[ x+\log \left (-e-\left (5+e^{2 x}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {2282, 1628, 628} \begin {gather*} x+\log \left (10 e^{2 x}+e^{4 x}+25+e\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 628
Rule 1628
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {25+e+30 x+5 x^2}{x \left (25+e+10 x+x^2\right )} \, dx,x,e^{2 x}\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {1}{x}+\frac {4 (5+x)}{25+e+10 x+x^2}\right ) \, dx,x,e^{2 x}\right )\\ &=x+2 \operatorname {Subst}\left (\int \frac {5+x}{25+e+10 x+x^2} \, dx,x,e^{2 x}\right )\\ &=x+\log \left (25+e+10 e^{2 x}+e^{4 x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 1.00 \begin {gather*} x+\log \left (25+e+10 e^{2 x}+e^{4 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 17, normalized size = 0.94 \begin {gather*} x + \log \left (e + e^{\left (4 \, x\right )} + 10 \, e^{\left (2 \, x\right )} + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 17, normalized size = 0.94 \begin {gather*} x + \log \left (e + e^{\left (4 \, x\right )} + 10 \, e^{\left (2 \, x\right )} + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 1.00
method | result | size |
norman | \(x +\ln \left ({\mathrm e}^{4 x}+10 \,{\mathrm e}^{2 x}+{\mathrm e}+25\right )\) | \(18\) |
risch | \(x +\ln \left ({\mathrm e}^{4 x}+10 \,{\mathrm e}^{2 x}+{\mathrm e}+25\right )\) | \(18\) |
derivativedivides | \(\ln \left (\left ({\mathrm e}^{4 x}+10 \,{\mathrm e}^{2 x}+{\mathrm e}+25\right ) {\mathrm e}^{x}\right )\) | \(19\) |
default | \(\ln \left (\left ({\mathrm e}^{4 x}+10 \,{\mathrm e}^{2 x}+{\mathrm e}+25\right ) {\mathrm e}^{x}\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 17, normalized size = 0.94 \begin {gather*} x + \log \left (e + e^{\left (4 \, x\right )} + 10 \, e^{\left (2 \, x\right )} + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.32, size = 17, normalized size = 0.94 \begin {gather*} x+\ln \left (10\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{4\,x}+\mathrm {e}+25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 19, normalized size = 1.06 \begin {gather*} x + \log {\left (e^{4 x} + 10 e^{2 x} + e + 25 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________