Optimal. Leaf size=30 \[ \frac {\log \left (3-x+x^2\right )}{5 \left (-x+\frac {x^2}{5+3 x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.07, antiderivative size = 37, normalized size of antiderivative = 1.23, number of steps used = 45, number of rules used = 14, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.180, Rules used = {6741, 12, 6728, 709, 800, 634, 618, 204, 628, 893, 1628, 2528, 2525, 2074} \begin {gather*} -\frac {\log \left (x^2-x+3\right )}{5 x}-\frac {\log \left (x^2-x+3\right )}{5 (2 x+5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 204
Rule 618
Rule 628
Rule 634
Rule 709
Rule 800
Rule 893
Rule 1628
Rule 2074
Rule 2525
Rule 2528
Rule 6728
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 x-25 x^2-44 x^3-12 x^4+\left (75+35 x+23 x^2+14 x^3+6 x^4\right ) \log \left (3-x+x^2\right )}{5 x^2 (5+2 x)^2 \left (3-x+x^2\right )} \, dx\\ &=\frac {1}{5} \int \frac {25 x-25 x^2-44 x^3-12 x^4+\left (75+35 x+23 x^2+14 x^3+6 x^4\right ) \log \left (3-x+x^2\right )}{x^2 (5+2 x)^2 \left (3-x+x^2\right )} \, dx\\ &=\frac {1}{5} \int \left (-\frac {25}{(5+2 x)^2 \left (3-x+x^2\right )}+\frac {25}{x (5+2 x)^2 \left (3-x+x^2\right )}-\frac {44 x}{(5+2 x)^2 \left (3-x+x^2\right )}-\frac {12 x^2}{(5+2 x)^2 \left (3-x+x^2\right )}+\frac {\left (25+20 x+6 x^2\right ) \log \left (3-x+x^2\right )}{x^2 (5+2 x)^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {\left (25+20 x+6 x^2\right ) \log \left (3-x+x^2\right )}{x^2 (5+2 x)^2} \, dx-\frac {12}{5} \int \frac {x^2}{(5+2 x)^2 \left (3-x+x^2\right )} \, dx-5 \int \frac {1}{(5+2 x)^2 \left (3-x+x^2\right )} \, dx+5 \int \frac {1}{x (5+2 x)^2 \left (3-x+x^2\right )} \, dx-\frac {44}{5} \int \frac {x}{(5+2 x)^2 \left (3-x+x^2\right )} \, dx\\ &=\frac {10}{47 (5+2 x)}-\frac {5}{47} \int \frac {7-2 x}{(5+2 x) \left (3-x+x^2\right )} \, dx+\frac {1}{5} \int \left (\frac {\log \left (3-x+x^2\right )}{x^2}+\frac {2 \log \left (3-x+x^2\right )}{(5+2 x)^2}\right ) \, dx-\frac {12}{5} \int \left (\frac {25}{47 (5+2 x)^2}-\frac {170}{2209 (5+2 x)}+\frac {-39+85 x}{2209 \left (3-x+x^2\right )}\right ) \, dx+5 \int \left (\frac {1}{75 x}-\frac {8}{235 (5+2 x)^2}-\frac {856}{55225 (5+2 x)}+\frac {-35-37 x}{6627 \left (3-x+x^2\right )}\right ) \, dx-\frac {44}{5} \int \left (-\frac {10}{47 (5+2 x)^2}-\frac {26}{2209 (5+2 x)}+\frac {72+13 x}{2209 \left (3-x+x^2\right )}\right ) \, dx\\ &=\frac {\log (x)}{15}+\frac {1164 \log (5+2 x)}{11045}+\frac {5 \int \frac {-35-37 x}{3-x+x^2} \, dx}{6627}-\frac {12 \int \frac {-39+85 x}{3-x+x^2} \, dx}{11045}-\frac {44 \int \frac {72+13 x}{3-x+x^2} \, dx}{11045}-\frac {5}{47} \int \left (\frac {48}{47 (5+2 x)}+\frac {37-24 x}{47 \left (3-x+x^2\right )}\right ) \, dx+\frac {1}{5} \int \frac {\log \left (3-x+x^2\right )}{x^2} \, dx+\frac {2}{5} \int \frac {\log \left (3-x+x^2\right )}{(5+2 x)^2} \, dx\\ &=\frac {\log (x)}{15}+\frac {12}{235} \log (5+2 x)-\frac {\log \left (3-x+x^2\right )}{5 x}-\frac {\log \left (3-x+x^2\right )}{5 (5+2 x)}-\frac {5 \int \frac {37-24 x}{3-x+x^2} \, dx}{2209}-\frac {42 \int \frac {1}{3-x+x^2} \, dx}{11045}-\frac {185 \int \frac {-1+2 x}{3-x+x^2} \, dx}{13254}-\frac {286 \int \frac {-1+2 x}{3-x+x^2} \, dx}{11045}-\frac {535 \int \frac {1}{3-x+x^2} \, dx}{13254}-\frac {102 \int \frac {-1+2 x}{3-x+x^2} \, dx}{2209}+\frac {1}{5} \int \frac {-1+2 x}{x \left (3-x+x^2\right )} \, dx+\frac {1}{5} \int \frac {-1+2 x}{15+x+3 x^2+2 x^3} \, dx-\frac {3454 \int \frac {1}{3-x+x^2} \, dx}{11045}\\ &=\frac {\log (x)}{15}+\frac {12}{235} \log (5+2 x)-\frac {5701 \log \left (3-x+x^2\right )}{66270}-\frac {\log \left (3-x+x^2\right )}{5 x}-\frac {\log \left (3-x+x^2\right )}{5 (5+2 x)}+\frac {84 \operatorname {Subst}\left (\int \frac {1}{-11-x^2} \, dx,x,-1+2 x\right )}{11045}+\frac {60 \int \frac {-1+2 x}{3-x+x^2} \, dx}{2209}-\frac {125 \int \frac {1}{3-x+x^2} \, dx}{2209}+\frac {535 \operatorname {Subst}\left (\int \frac {1}{-11-x^2} \, dx,x,-1+2 x\right )}{6627}+\frac {1}{5} \int \left (-\frac {1}{3 x}+\frac {5+x}{3 \left (3-x+x^2\right )}\right ) \, dx+\frac {1}{5} \int \left (-\frac {24}{47 (5+2 x)}+\frac {5+12 x}{47 \left (3-x+x^2\right )}\right ) \, dx+\frac {6908 \operatorname {Subst}\left (\int \frac {1}{-11-x^2} \, dx,x,-1+2 x\right )}{11045}\\ &=\frac {2927 \tan ^{-1}\left (\frac {1-2 x}{\sqrt {11}}\right )}{33135 \sqrt {11}}+\frac {628 \sqrt {11} \tan ^{-1}\left (\frac {1-2 x}{\sqrt {11}}\right )}{11045}-\frac {83 \log \left (3-x+x^2\right )}{1410}-\frac {\log \left (3-x+x^2\right )}{5 x}-\frac {\log \left (3-x+x^2\right )}{5 (5+2 x)}+\frac {1}{235} \int \frac {5+12 x}{3-x+x^2} \, dx+\frac {1}{15} \int \frac {5+x}{3-x+x^2} \, dx+\frac {250 \operatorname {Subst}\left (\int \frac {1}{-11-x^2} \, dx,x,-1+2 x\right )}{2209}\\ &=\frac {53}{705} \sqrt {11} \tan ^{-1}\left (\frac {1-2 x}{\sqrt {11}}\right )-\frac {83 \log \left (3-x+x^2\right )}{1410}-\frac {\log \left (3-x+x^2\right )}{5 x}-\frac {\log \left (3-x+x^2\right )}{5 (5+2 x)}+\frac {6}{235} \int \frac {-1+2 x}{3-x+x^2} \, dx+\frac {1}{30} \int \frac {-1+2 x}{3-x+x^2} \, dx+\frac {11}{235} \int \frac {1}{3-x+x^2} \, dx+\frac {11}{30} \int \frac {1}{3-x+x^2} \, dx\\ &=\frac {53}{705} \sqrt {11} \tan ^{-1}\left (\frac {1-2 x}{\sqrt {11}}\right )-\frac {\log \left (3-x+x^2\right )}{5 x}-\frac {\log \left (3-x+x^2\right )}{5 (5+2 x)}-\frac {22}{235} \operatorname {Subst}\left (\int \frac {1}{-11-x^2} \, dx,x,-1+2 x\right )-\frac {11}{15} \operatorname {Subst}\left (\int \frac {1}{-11-x^2} \, dx,x,-1+2 x\right )\\ &=-\frac {\log \left (3-x+x^2\right )}{5 x}-\frac {\log \left (3-x+x^2\right )}{5 (5+2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 28, normalized size = 0.93 \begin {gather*} -\frac {(5+3 x) \log \left (3-x+x^2\right )}{5 x (5+2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 27, normalized size = 0.90 \begin {gather*} -\frac {{\left (3 \, x + 5\right )} \log \left (x^{2} - x + 3\right )}{5 \, {\left (2 \, x^{2} + 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 22, normalized size = 0.73 \begin {gather*} -\frac {1}{5} \, {\left (\frac {1}{2 \, x + 5} + \frac {1}{x}\right )} \log \left (x^{2} - x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 27, normalized size = 0.90
method | result | size |
risch | \(-\frac {\left (3 x +5\right ) \ln \left (x^{2}-x +3\right )}{5 \left (5+2 x \right ) x}\) | \(27\) |
norman | \(\frac {-\frac {3 \ln \left (x^{2}-x +3\right ) x}{5}-\ln \left (x^{2}-x +3\right )}{\left (5+2 x \right ) x}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.97, size = 27, normalized size = 0.90 \begin {gather*} -\frac {{\left (3 \, x + 5\right )} \log \left (x^{2} - x + 3\right )}{5 \, {\left (2 \, x^{2} + 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 26, normalized size = 0.87 \begin {gather*} -\frac {\ln \left (x^2-x+3\right )\,\left (3\,x+5\right )}{5\,x\,\left (2\,x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 22, normalized size = 0.73 \begin {gather*} \frac {\left (- 3 x - 5\right ) \log {\left (x^{2} - x + 3 \right )}}{10 x^{2} + 25 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________