Optimal. Leaf size=28 \[ \frac {\left (4+\frac {2}{x}\right ) x \log \left (1+x^2\right )}{4 \left (2+e^4\right )-x} \]
________________________________________________________________________________________
Rubi [B] time = 0.74, antiderivative size = 172, normalized size of antiderivative = 6.14, number of steps used = 14, number of rules used = 8, integrand size = 103, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {6688, 6725, 1629, 635, 203, 260, 2463, 801} \begin {gather*} \frac {2 \left (17+8 e^4\right ) \log \left (x^2+1\right )}{4 \left (2+e^4\right )-x}-\frac {8 \left (2+e^4\right ) \left (17+8 e^4\right ) \log \left (x^2+1\right )}{65+64 e^4+16 e^8}+\frac {4 \left (3+2 e^4\right ) \log \left (x^2+1\right )}{65+64 e^4+16 e^8}-\frac {16 \left (34+33 e^4+8 e^8\right ) \log \left (4 \left (2+e^4\right )-x\right )}{65+64 e^4+16 e^8}+\frac {16 \left (2+e^4\right ) \left (17+8 e^4\right ) \log \left (4 \left (2+e^4\right )-x\right )}{65+64 e^4+16 e^8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 203
Rule 260
Rule 635
Rule 801
Rule 1629
Rule 2463
Rule 6688
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x \left (8+15 x-2 x^2+e^4 (4+8 x)\right )+2 \left (17+8 e^4\right ) \left (1+x^2\right ) \log \left (1+x^2\right )}{\left (8+4 e^4-x\right )^2 \left (1+x^2\right )} \, dx\\ &=\int \left (\frac {4 x (1+2 x)}{\left (8+4 e^4-x\right ) \left (1+x^2\right )}+\frac {2 \left (17+8 e^4\right ) \log \left (1+x^2\right )}{\left (8+4 e^4-x\right )^2}\right ) \, dx\\ &=4 \int \frac {x (1+2 x)}{\left (8+4 e^4-x\right ) \left (1+x^2\right )} \, dx+\left (2 \left (17+8 e^4\right )\right ) \int \frac {\log \left (1+x^2\right )}{\left (8+4 e^4-x\right )^2} \, dx\\ &=\frac {2 \left (17+8 e^4\right ) \log \left (1+x^2\right )}{4 \left (2+e^4\right )-x}+4 \int \left (\frac {4 \left (34+33 e^4+8 e^8\right )}{\left (65+64 e^4+16 e^8\right ) \left (8+4 e^4-x\right )}+\frac {-17-8 e^4+2 \left (3+2 e^4\right ) x}{\left (65+64 e^4+16 e^8\right ) \left (1+x^2\right )}\right ) \, dx-\left (4 \left (17+8 e^4\right )\right ) \int \frac {x}{\left (8+4 e^4-x\right ) \left (1+x^2\right )} \, dx\\ &=-\frac {16 \left (34+33 e^4+8 e^8\right ) \log \left (4 \left (2+e^4\right )-x\right )}{65+64 e^4+16 e^8}+\frac {2 \left (17+8 e^4\right ) \log \left (1+x^2\right )}{4 \left (2+e^4\right )-x}-\left (4 \left (17+8 e^4\right )\right ) \int \left (\frac {4 \left (2+e^4\right )}{\left (65+64 e^4+16 e^8\right ) \left (8+4 e^4-x\right )}+\frac {-1+4 \left (2+e^4\right ) x}{\left (65+64 e^4+16 e^8\right ) \left (1+x^2\right )}\right ) \, dx+\frac {4 \int \frac {-17-8 e^4+2 \left (3+2 e^4\right ) x}{1+x^2} \, dx}{65+64 e^4+16 e^8}\\ &=\frac {16 \left (2+e^4\right ) \left (17+8 e^4\right ) \log \left (4 \left (2+e^4\right )-x\right )}{65+64 e^4+16 e^8}-\frac {16 \left (34+33 e^4+8 e^8\right ) \log \left (4 \left (2+e^4\right )-x\right )}{65+64 e^4+16 e^8}+\frac {2 \left (17+8 e^4\right ) \log \left (1+x^2\right )}{4 \left (2+e^4\right )-x}+\frac {\left (8 \left (3+2 e^4\right )\right ) \int \frac {x}{1+x^2} \, dx}{65+64 e^4+16 e^8}-\frac {\left (4 \left (17+8 e^4\right )\right ) \int \frac {1}{1+x^2} \, dx}{65+64 e^4+16 e^8}-\frac {\left (4 \left (17+8 e^4\right )\right ) \int \frac {-1+4 \left (2+e^4\right ) x}{1+x^2} \, dx}{65+64 e^4+16 e^8}\\ &=-\frac {4 \left (17+8 e^4\right ) \tan ^{-1}(x)}{65+64 e^4+16 e^8}+\frac {16 \left (2+e^4\right ) \left (17+8 e^4\right ) \log \left (4 \left (2+e^4\right )-x\right )}{65+64 e^4+16 e^8}-\frac {16 \left (34+33 e^4+8 e^8\right ) \log \left (4 \left (2+e^4\right )-x\right )}{65+64 e^4+16 e^8}+\frac {4 \left (3+2 e^4\right ) \log \left (1+x^2\right )}{65+64 e^4+16 e^8}+\frac {2 \left (17+8 e^4\right ) \log \left (1+x^2\right )}{4 \left (2+e^4\right )-x}+\frac {\left (4 \left (17+8 e^4\right )\right ) \int \frac {1}{1+x^2} \, dx}{65+64 e^4+16 e^8}-\frac {\left (16 \left (2+e^4\right ) \left (17+8 e^4\right )\right ) \int \frac {x}{1+x^2} \, dx}{65+64 e^4+16 e^8}\\ &=\frac {16 \left (2+e^4\right ) \left (17+8 e^4\right ) \log \left (4 \left (2+e^4\right )-x\right )}{65+64 e^4+16 e^8}-\frac {16 \left (34+33 e^4+8 e^8\right ) \log \left (4 \left (2+e^4\right )-x\right )}{65+64 e^4+16 e^8}+\frac {4 \left (3+2 e^4\right ) \log \left (1+x^2\right )}{65+64 e^4+16 e^8}-\frac {8 \left (2+e^4\right ) \left (17+8 e^4\right ) \log \left (1+x^2\right )}{65+64 e^4+16 e^8}+\frac {2 \left (17+8 e^4\right ) \log \left (1+x^2\right )}{4 \left (2+e^4\right )-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 25, normalized size = 0.89 \begin {gather*} \frac {2 (1+2 x) \log \left (1+x^2\right )}{8+4 e^4-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 22, normalized size = 0.79 \begin {gather*} -\frac {2 \, {\left (2 \, x + 1\right )} \log \left (x^{2} + 1\right )}{x - 4 \, e^{4} - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 27, normalized size = 0.96 \begin {gather*} -\frac {2 \, {\left (2 \, x \log \left (x^{2} + 1\right ) + \log \left (x^{2} + 1\right )\right )}}{x - 4 \, e^{4} - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 31, normalized size = 1.11
method | result | size |
norman | \(\frac {2 \ln \left (x^{2}+1\right )+4 x \ln \left (x^{2}+1\right )}{8+4 \,{\mathrm e}^{4}-x}\) | \(31\) |
risch | \(\frac {2 \left (8 \,{\mathrm e}^{4}+17\right ) \ln \left (x^{2}+1\right )}{8+4 \,{\mathrm e}^{4}-x}-4 \ln \left (x^{2}+1\right )\) | \(35\) |
default | \(-\frac {128 \ln \left (-4 \,{\mathrm e}^{4}+x -8\right ) \left ({\mathrm e}^{4}\right )^{2}}{16 \left ({\mathrm e}^{4}\right )^{2}+64 \,{\mathrm e}^{4}+65}-\frac {528 \ln \left (-4 \,{\mathrm e}^{4}+x -8\right ) {\mathrm e}^{4}}{16 \left ({\mathrm e}^{4}\right )^{2}+64 \,{\mathrm e}^{4}+65}-\frac {544 \ln \left (-4 \,{\mathrm e}^{4}+x -8\right )}{16 \left ({\mathrm e}^{4}\right )^{2}+64 \,{\mathrm e}^{4}+65}+\frac {8 \ln \left (x^{2}+1\right ) {\mathrm e}^{4}}{16 \,{\mathrm e}^{8}+64 \,{\mathrm e}^{4}+65}-\frac {32 \arctan \relax (x ) {\mathrm e}^{4}}{16 \,{\mathrm e}^{8}+64 \,{\mathrm e}^{4}+65}+\frac {12 \ln \left (x^{2}+1\right )}{16 \,{\mathrm e}^{8}+64 \,{\mathrm e}^{4}+65}-\frac {68 \arctan \relax (x )}{16 \,{\mathrm e}^{8}+64 \,{\mathrm e}^{4}+65}+\frac {\left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (\textit {\_Z}^{2}+\left (-8 \,{\mathrm e}^{4}-16\right ) \textit {\_Z} +64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}+64\right )}{\sum }\left (\frac {\underline {\hspace {1.25 ex}}\alpha }{\left ({\mathrm e}^{4}\right )^{2}-{\mathrm e}^{8}}-\frac {4 \left (2+{\mathrm e}^{4}\right )}{\left ({\mathrm e}^{4}\right )^{2}-{\mathrm e}^{8}}\right ) \left (\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (x^{2}+1\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {-\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}+x}{\underline {\hspace {1.25 ex}}\alpha -\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}}\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}+x}{\underline {\hspace {1.25 ex}}\alpha +\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}}\right )-\dilog \left (\frac {-\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}+x}{\underline {\hspace {1.25 ex}}\alpha -\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}}\right )-\dilog \left (\frac {\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}+x}{\underline {\hspace {1.25 ex}}\alpha +\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}}\right )\right )\right ) {\mathrm e}^{4}}{2}+\frac {17 \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (\textit {\_Z}^{2}+\left (-8 \,{\mathrm e}^{4}-16\right ) \textit {\_Z} +64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}+64\right )}{\sum }\left (\frac {\underline {\hspace {1.25 ex}}\alpha }{\left ({\mathrm e}^{4}\right )^{2}-{\mathrm e}^{8}}-\frac {4 \left (2+{\mathrm e}^{4}\right )}{\left ({\mathrm e}^{4}\right )^{2}-{\mathrm e}^{8}}\right ) \left (\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (x^{2}+1\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {-\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}+x}{\underline {\hspace {1.25 ex}}\alpha -\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}}\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}+x}{\underline {\hspace {1.25 ex}}\alpha +\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}}\right )-\dilog \left (\frac {-\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}+x}{\underline {\hspace {1.25 ex}}\alpha -\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}}\right )-\dilog \left (\frac {\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}+x}{\underline {\hspace {1.25 ex}}\alpha +\sqrt {\underline {\hspace {1.25 ex}}\alpha ^{2}-8 \underline {\hspace {1.25 ex}}\alpha \,{\mathrm e}^{4}+64 \,{\mathrm e}^{4}+16 \,{\mathrm e}^{8}-16 \underline {\hspace {1.25 ex}}\alpha +63}}\right )\right )\right )}{16}\) | \(792\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.95, size = 763, normalized size = 27.25 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.61, size = 24, normalized size = 0.86 \begin {gather*} \frac {2\,\ln \left (x^2+1\right )\,\left (2\,x+1\right )}{4\,{\mathrm {e}}^4-x+8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 31, normalized size = 1.11 \begin {gather*} - 4 \log {\left (x^{2} + 1 \right )} + \frac {\left (- 16 e^{4} - 34\right ) \log {\left (x^{2} + 1 \right )}}{x - 4 e^{4} - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________