Optimal. Leaf size=24 \[ \frac {1}{2 x-\frac {\left (3-x-3 e^2 x\right ) \log (x)}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3-x-3 e^2 x-2 x^2-3 \log (x)}{4 x^4+\left (-12 x^2+4 x^3+12 e^2 x^3\right ) \log (x)+\left (9-6 x+x^2+9 e^4 x^2+e^2 \left (-18 x+6 x^2\right )\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+\left (-1-3 e^2\right ) x-2 x^2-3 \log (x)}{4 x^4+\left (-12 x^2+4 x^3+12 e^2 x^3\right ) \log (x)+\left (9-6 x+x^2+9 e^4 x^2+e^2 \left (-18 x+6 x^2\right )\right ) \log ^2(x)} \, dx\\ &=\int \frac {3-\left (1+3 e^2\right ) x-2 x^2-3 \log (x)}{\left (2 x^2+\left (-3+x+3 e^2 x\right ) \log (x)\right )^2} \, dx\\ &=\int \left (\frac {9-6 \left (1+3 e^2\right ) x-\left (11-6 e^2-9 e^4\right ) x^2+2 \left (1+3 e^2\right ) x^3}{\left (3-\left (1+3 e^2\right ) x\right ) \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2}+\frac {3}{\left (3-\left (1+3 e^2\right ) x\right ) \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )}\right ) \, dx\\ &=3 \int \frac {1}{\left (3-\left (1+3 e^2\right ) x\right ) \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )} \, dx+\int \frac {9-6 \left (1+3 e^2\right ) x-\left (11-6 e^2-9 e^4\right ) x^2+2 \left (1+3 e^2\right ) x^3}{\left (3-\left (1+3 e^2\right ) x\right ) \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2} \, dx\\ &=3 \int \frac {1}{\left (3-\left (1+3 e^2\right ) x\right ) \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )} \, dx+\int \left (\frac {3 \left (7+6 e^2+9 e^4\right )}{\left (1+3 e^2\right )^2 \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2}+\frac {\left (5-6 e^2-9 e^4\right ) x}{\left (1+3 e^2\right ) \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2}-\frac {2 x^2}{\left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2}+\frac {54}{\left (1+3 e^2\right )^2 \left (-3+\left (1+3 e^2\right ) x\right ) \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x^2}{\left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2} \, dx\right )+3 \int \frac {1}{\left (3-\left (1+3 e^2\right ) x\right ) \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )} \, dx+\frac {54 \int \frac {1}{\left (-3+\left (1+3 e^2\right ) x\right ) \left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2} \, dx}{\left (1+3 e^2\right )^2}+\frac {\left (5-6 e^2-9 e^4\right ) \int \frac {x}{\left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2} \, dx}{1+3 e^2}+\frac {\left (3 \left (7+6 e^2+9 e^4\right )\right ) \int \frac {1}{\left (2 x^2-3 \log (x)+\left (1+3 e^2\right ) x \log (x)\right )^2} \, dx}{\left (1+3 e^2\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 22, normalized size = 0.92 \begin {gather*} \frac {x}{2 x^2+\left (-3+x+3 e^2 x\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 21, normalized size = 0.88 \begin {gather*} \frac {x}{2 \, x^{2} + {\left (3 \, x e^{2} + x - 3\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 25, normalized size = 1.04 \begin {gather*} \frac {x}{3 \, x e^{2} \log \relax (x) + 2 \, x^{2} + x \log \relax (x) - 3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 26, normalized size = 1.08
method | result | size |
norman | \(\frac {x}{3 x \,{\mathrm e}^{2} \ln \relax (x )+x \ln \relax (x )+2 x^{2}-3 \ln \relax (x )}\) | \(26\) |
risch | \(\frac {x}{3 x \,{\mathrm e}^{2} \ln \relax (x )+x \ln \relax (x )+2 x^{2}-3 \ln \relax (x )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 23, normalized size = 0.96 \begin {gather*} \frac {x}{2 \, x^{2} + {\left (x {\left (3 \, e^{2} + 1\right )} - 3\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.98, size = 21, normalized size = 0.88 \begin {gather*} \frac {x}{\ln \relax (x)\,\left (x+3\,x\,{\mathrm {e}}^2-3\right )+2\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 19, normalized size = 0.79 \begin {gather*} \frac {x}{2 x^{2} + \left (x + 3 x e^{2} - 3\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________