Optimal. Leaf size=29 \[ 2 \left (4 x+\log \left (\frac {e^{\frac {x}{x-(4+x)^2}}}{4 x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 21, normalized size of antiderivative = 0.72, number of steps used = 7, number of rules used = 4, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2074, 638, 618, 204} \begin {gather*} -\frac {2 x}{x^2+7 x+16}+8 x-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 204
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (8-\frac {2}{x}-\frac {2 (32+7 x)}{\left (16+7 x+x^2\right )^2}+\frac {2}{16+7 x+x^2}\right ) \, dx\\ &=8 x-2 \log (x)-2 \int \frac {32+7 x}{\left (16+7 x+x^2\right )^2} \, dx+2 \int \frac {1}{16+7 x+x^2} \, dx\\ &=8 x-\frac {2 x}{16+7 x+x^2}-2 \log (x)-2 \int \frac {1}{16+7 x+x^2} \, dx-4 \operatorname {Subst}\left (\int \frac {1}{-15-x^2} \, dx,x,7+2 x\right )\\ &=8 x-\frac {2 x}{16+7 x+x^2}+\frac {4 \tan ^{-1}\left (\frac {7+2 x}{\sqrt {15}}\right )}{\sqrt {15}}-2 \log (x)+4 \operatorname {Subst}\left (\int \frac {1}{-15-x^2} \, dx,x,7+2 x\right )\\ &=8 x-\frac {2 x}{16+7 x+x^2}-2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.79 \begin {gather*} 2 \left (4 x-\frac {x}{16+7 x+x^2}-\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 38, normalized size = 1.31 \begin {gather*} \frac {2 \, {\left (4 \, x^{3} + 28 \, x^{2} - {\left (x^{2} + 7 \, x + 16\right )} \log \relax (x) + 63 \, x\right )}}{x^{2} + 7 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 22, normalized size = 0.76 \begin {gather*} 8 \, x - \frac {2 \, x}{x^{2} + 7 \, x + 16} - 2 \, \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.76
method | result | size |
default | \(8 x -\frac {2 x}{x^{2}+7 x +16}-2 \ln \relax (x )\) | \(22\) |
risch | \(8 x -\frac {2 x}{x^{2}+7 x +16}-2 \ln \relax (x )\) | \(22\) |
norman | \(\frac {8 x^{3}-266 x -896}{x^{2}+7 x +16}-2 \ln \relax (x )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 21, normalized size = 0.72 \begin {gather*} 8 \, x - \frac {2 \, x}{x^{2} + 7 \, x + 16} - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.27, size = 21, normalized size = 0.72 \begin {gather*} 8\,x-2\,\ln \relax (x)-\frac {2\,x}{x^2+7\,x+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.66 \begin {gather*} 8 x - \frac {2 x}{x^{2} + 7 x + 16} - 2 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________