Optimal. Leaf size=21 \[ e^{x \left (-4+e^{1-x} x \left (4+e^x+x\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (-1+\frac {-4 e x+e^2 x^2+e^{2-x} \left (4 x^2+x^3\right )}{e}\right ) \left (-4 e+2 e^2 x+e^{2-x} \left (8 x-x^2-x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-5 x+e x^2+e^{1-x} x^2 (4+x)} \left (-4 e^x+2 e^{1+x} x-e x \left (-8+x+x^2\right )\right ) \, dx\\ &=\int \left (-4 e^{-4 x+e x^2+e^{1-x} x^2 (4+x)}+2 e^{1-4 x+e x^2+e^{1-x} x^2 (4+x)} x-e^{1-5 x+e x^2+e^{1-x} x^2 (4+x)} x \left (-8+x+x^2\right )\right ) \, dx\\ &=2 \int e^{1-4 x+e x^2+e^{1-x} x^2 (4+x)} x \, dx-4 \int e^{-4 x+e x^2+e^{1-x} x^2 (4+x)} \, dx-\int e^{1-5 x+e x^2+e^{1-x} x^2 (4+x)} x \left (-8+x+x^2\right ) \, dx\\ &=2 \int e^{1-4 x+e x^2+e^{1-x} x^2 (4+x)} x \, dx-4 \int e^{-4 x+e x^2+e^{1-x} x^2 (4+x)} \, dx-\int \left (-8 e^{1-5 x+e x^2+e^{1-x} x^2 (4+x)} x+e^{1-5 x+e x^2+e^{1-x} x^2 (4+x)} x^2+e^{1-5 x+e x^2+e^{1-x} x^2 (4+x)} x^3\right ) \, dx\\ &=2 \int e^{1-4 x+e x^2+e^{1-x} x^2 (4+x)} x \, dx-4 \int e^{-4 x+e x^2+e^{1-x} x^2 (4+x)} \, dx+8 \int e^{1-5 x+e x^2+e^{1-x} x^2 (4+x)} x \, dx-\int e^{1-5 x+e x^2+e^{1-x} x^2 (4+x)} x^2 \, dx-\int e^{1-5 x+e x^2+e^{1-x} x^2 (4+x)} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 21, normalized size = 1.00 \begin {gather*} e^{x \left (-4+e x+e^{1-x} x (4+x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.98, size = 38, normalized size = 1.81 \begin {gather*} e^{\left ({\left (x^{2} e^{2} - {\left (4 \, x + 1\right )} e + {\left (x^{3} + 4 \, x^{2}\right )} e^{\left (-x + 2\right )}\right )} e^{\left (-1\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 32, normalized size = 1.52 \begin {gather*} e^{\left (x^{3} e^{\left (-x + 1\right )} + x^{2} e + 4 \, x^{2} e^{\left (-x + 1\right )} - 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 35, normalized size = 1.67
method | result | size |
norman | \({\mathrm e}^{\left (x^{2} {\mathrm e}^{2}+\left (x^{3}+4 x^{2}\right ) {\mathrm e}^{2} {\mathrm e}^{-x}-4 x \,{\mathrm e}\right ) {\mathrm e}^{-1}}\) | \(35\) |
risch | \({\mathrm e}^{-x \left (-x^{2} {\mathrm e}^{2-x}-{\mathrm e}^{2} x -4 x \,{\mathrm e}^{2-x}+4 \,{\mathrm e}\right ) {\mathrm e}^{-1}}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 32, normalized size = 1.52 \begin {gather*} e^{\left (x^{3} e^{\left (-x + 1\right )} + x^{2} e + 4 \, x^{2} e^{\left (-x + 1\right )} - 4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.44, size = 35, normalized size = 1.67 \begin {gather*} {\mathrm {e}}^{x^2\,\mathrm {e}}\,{\mathrm {e}}^{-4\,x}\,{\mathrm {e}}^{x^3\,{\mathrm {e}}^{-x}\,\mathrm {e}}\,{\mathrm {e}}^{4\,x^2\,{\mathrm {e}}^{-x}\,\mathrm {e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 32, normalized size = 1.52 \begin {gather*} e^{\frac {x^{2} e^{2} - 4 e x + \left (x^{3} + 4 x^{2}\right ) e^{2} e^{- x}}{e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________