Optimal. Leaf size=30 \[ \frac {3-\frac {1}{3} \log \left (1-\frac {3+x}{3 (1-x) x}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.91, antiderivative size = 38, normalized size of antiderivative = 1.27, number of steps used = 35, number of rules used = 12, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {6741, 12, 6742, 893, 634, 618, 204, 628, 2058, 2074, 2525, 6728} \begin {gather*} \frac {3}{x}-\frac {\log \left (-\frac {3 x^2-2 x+3}{3 (1-x) x}\right )}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 204
Rule 618
Rule 628
Rule 634
Rule 893
Rule 2058
Rule 2074
Rule 2525
Rule 6728
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-24+39 x-46 x^2+27 x^3-\left (-3+5 x-5 x^2+3 x^3\right ) \log \left (\frac {3-2 x+3 x^2}{-3 x+3 x^2}\right )}{3 x^2 \left (3-5 x+5 x^2-3 x^3\right )} \, dx\\ &=\frac {1}{3} \int \frac {-24+39 x-46 x^2+27 x^3-\left (-3+5 x-5 x^2+3 x^3\right ) \log \left (\frac {3-2 x+3 x^2}{-3 x+3 x^2}\right )}{x^2 \left (3-5 x+5 x^2-3 x^3\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {24}{(-1+x) x^2 \left (3-2 x+3 x^2\right )}+\frac {46}{-3+5 x-5 x^2+3 x^3}-\frac {39}{x \left (-3+5 x-5 x^2+3 x^3\right )}-\frac {27 x}{-3+5 x-5 x^2+3 x^3}+\frac {\log \left (\frac {3-2 x+3 x^2}{x (-3+3 x)}\right )}{x^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {\log \left (\frac {3-2 x+3 x^2}{x (-3+3 x)}\right )}{x^2} \, dx+8 \int \frac {1}{(-1+x) x^2 \left (3-2 x+3 x^2\right )} \, dx-9 \int \frac {x}{-3+5 x-5 x^2+3 x^3} \, dx-13 \int \frac {1}{x \left (-3+5 x-5 x^2+3 x^3\right )} \, dx+\frac {46}{3} \int \frac {1}{-3+5 x-5 x^2+3 x^3} \, dx\\ &=-\frac {\log \left (-\frac {3-2 x+3 x^2}{3 (1-x) x}\right )}{3 x}+\frac {1}{3} \int \frac {-3+6 x+x^2}{(1-x) x^2 \left (3-2 x+3 x^2\right )} \, dx+8 \int \left (\frac {1}{4 (-1+x)}-\frac {1}{3 x^2}-\frac {5}{9 x}+\frac {-13+33 x}{36 \left (3-2 x+3 x^2\right )}\right ) \, dx-9 \int \left (\frac {1}{4 (-1+x)}-\frac {3 (-1+x)}{4 \left (3-2 x+3 x^2\right )}\right ) \, dx-13 \int \left (\frac {1}{4 (-1+x)}-\frac {1}{3 x}+\frac {-11+3 x}{12 \left (3-2 x+3 x^2\right )}\right ) \, dx+\frac {46}{3} \int \left (\frac {1}{4 (-1+x)}+\frac {-1-3 x}{4 \left (3-2 x+3 x^2\right )}\right ) \, dx\\ &=\frac {8}{3 x}+\frac {1}{3} \log (1-x)-\frac {\log (x)}{9}-\frac {\log \left (-\frac {3-2 x+3 x^2}{3 (1-x) x}\right )}{3 x}+\frac {2}{9} \int \frac {-13+33 x}{3-2 x+3 x^2} \, dx+\frac {1}{3} \int \left (\frac {1}{1-x}-\frac {1}{x^2}+\frac {1}{3 x}+\frac {2 (7+3 x)}{3 \left (3-2 x+3 x^2\right )}\right ) \, dx-\frac {13}{12} \int \frac {-11+3 x}{3-2 x+3 x^2} \, dx+\frac {23}{6} \int \frac {-1-3 x}{3-2 x+3 x^2} \, dx+\frac {27}{4} \int \frac {-1+x}{3-2 x+3 x^2} \, dx\\ &=\frac {3}{x}-\frac {\log \left (-\frac {3-2 x+3 x^2}{3 (1-x) x}\right )}{3 x}+\frac {2}{9} \int \frac {7+3 x}{3-2 x+3 x^2} \, dx-\frac {4}{9} \int \frac {1}{3-2 x+3 x^2} \, dx-\frac {13}{24} \int \frac {-2+6 x}{3-2 x+3 x^2} \, dx+\frac {9}{8} \int \frac {-2+6 x}{3-2 x+3 x^2} \, dx+\frac {11}{9} \int \frac {-2+6 x}{3-2 x+3 x^2} \, dx-\frac {23}{12} \int \frac {-2+6 x}{3-2 x+3 x^2} \, dx-\frac {9}{2} \int \frac {1}{3-2 x+3 x^2} \, dx-\frac {23}{3} \int \frac {1}{3-2 x+3 x^2} \, dx+\frac {65}{6} \int \frac {1}{3-2 x+3 x^2} \, dx\\ &=\frac {3}{x}-\frac {1}{9} \log \left (3-2 x+3 x^2\right )-\frac {\log \left (-\frac {3-2 x+3 x^2}{3 (1-x) x}\right )}{3 x}+\frac {1}{9} \int \frac {-2+6 x}{3-2 x+3 x^2} \, dx+\frac {8}{9} \operatorname {Subst}\left (\int \frac {1}{-32-x^2} \, dx,x,-2+6 x\right )+\frac {16}{9} \int \frac {1}{3-2 x+3 x^2} \, dx+9 \operatorname {Subst}\left (\int \frac {1}{-32-x^2} \, dx,x,-2+6 x\right )+\frac {46}{3} \operatorname {Subst}\left (\int \frac {1}{-32-x^2} \, dx,x,-2+6 x\right )-\frac {65}{3} \operatorname {Subst}\left (\int \frac {1}{-32-x^2} \, dx,x,-2+6 x\right )\\ &=\frac {3}{x}+\frac {4}{9} \sqrt {2} \tan ^{-1}\left (\frac {1-3 x}{2 \sqrt {2}}\right )-\frac {\log \left (-\frac {3-2 x+3 x^2}{3 (1-x) x}\right )}{3 x}-\frac {32}{9} \operatorname {Subst}\left (\int \frac {1}{-32-x^2} \, dx,x,-2+6 x\right )\\ &=\frac {3}{x}-\frac {\log \left (-\frac {3-2 x+3 x^2}{3 (1-x) x}\right )}{3 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 38, normalized size = 1.27 \begin {gather*} \frac {1}{3} \left (\frac {9}{x}-\frac {\log \left (\frac {3-2 x+3 x^2}{-3 x+3 x^2}\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 29, normalized size = 0.97 \begin {gather*} -\frac {\log \left (\frac {3 \, x^{2} - 2 \, x + 3}{3 \, {\left (x^{2} - x\right )}}\right ) - 9}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 33, normalized size = 1.10 \begin {gather*} -\frac {\log \left (\frac {3 \, x^{2} - 2 \, x + 3}{3 \, {\left (x^{2} - x\right )}}\right )}{3 \, x} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 32, normalized size = 1.07
method | result | size |
norman | \(\frac {3-\frac {\ln \left (\frac {3 x^{2}-2 x +3}{3 x^{2}-3 x}\right )}{3}}{x}\) | \(32\) |
risch | \(-\frac {\ln \left (\frac {3 x^{2}-2 x +3}{3 x^{2}-3 x}\right )}{3 x}+\frac {3}{x}\) | \(35\) |
default | \(-\frac {\ln \left (\frac {3 x^{2}-2 x +3}{x \left (x -1\right )}\right )}{3 x}+\frac {3}{x}+\frac {\ln \relax (3)}{3 x}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.07, size = 70, normalized size = 2.33 \begin {gather*} \frac {{\left (x - 3\right )} \log \left (3 \, x^{2} - 2 \, x + 3\right ) - 3 \, {\left (x - 1\right )} \log \left (x - 1\right ) + {\left (x + 3\right )} \log \relax (x) + 3 \, \log \relax (3) + 3}{9 \, x} + \frac {8}{3 \, x} - \frac {1}{9} \, \log \left (3 \, x^{2} - 2 \, x + 3\right ) + \frac {1}{3} \, \log \left (x - 1\right ) - \frac {1}{9} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.53, size = 31, normalized size = 1.03 \begin {gather*} -\frac {\ln \left (-\frac {3\,x^2-2\,x+3}{3\,x-3\,x^2}\right )-9}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 26, normalized size = 0.87 \begin {gather*} - \frac {\log {\left (\frac {3 x^{2} - 2 x + 3}{3 x^{2} - 3 x} \right )}}{3 x} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________