Optimal. Leaf size=36 \[ \frac {4}{x}+\frac {e^{5+5 \left (-e^x-x+\log (16)\right )}+x-\log (x)}{2 x} \]
________________________________________________________________________________________
Rubi [F] time = 0.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-9+1048576 e^{5-5 e^x-5 x} \left (-1-5 x-5 e^x x\right )+\log (x)}{2 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-9+1048576 e^{5-5 e^x-5 x} \left (-1-5 x-5 e^x x\right )+\log (x)}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {1048576 e^{-5 \left (-1+e^x+x\right )} (-1-5 x)}{x^2}-\frac {5242880 e^{5-5 e^x-4 x}}{x}+\frac {-9+\log (x)}{x^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-9+\log (x)}{x^2} \, dx+524288 \int \frac {e^{-5 \left (-1+e^x+x\right )} (-1-5 x)}{x^2} \, dx-2621440 \int \frac {e^{5-5 e^x-4 x}}{x} \, dx\\ &=-\frac {1}{2 x}+\frac {9-\log (x)}{2 x}+524288 \int \left (-\frac {e^{-5 \left (-1+e^x+x\right )}}{x^2}-\frac {5 e^{-5 \left (-1+e^x+x\right )}}{x}\right ) \, dx-2621440 \int \frac {e^{5-5 e^x-4 x}}{x} \, dx\\ &=-\frac {1}{2 x}+\frac {9-\log (x)}{2 x}-524288 \int \frac {e^{-5 \left (-1+e^x+x\right )}}{x^2} \, dx-2621440 \int \frac {e^{5-5 e^x-4 x}}{x} \, dx-2621440 \int \frac {e^{-5 \left (-1+e^x+x\right )}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 25, normalized size = 0.69 \begin {gather*} \frac {8+1048576 e^{-5 \left (-1+e^x+x\right )}-\log (x)}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 25, normalized size = 0.69 \begin {gather*} \frac {e^{\left (-5 \, x - 5 \, e^{x} + 20 \, \log \relax (2) + 5\right )} - \log \relax (x) + 8}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 31, normalized size = 0.86 \begin {gather*} -\frac {{\left (e^{x} \log \relax (x) - 8 \, e^{x} - 1048576 \, e^{\left (-4 \, x - 5 \, e^{x} + 5\right )}\right )} e^{\left (-x\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 29, normalized size = 0.81
method | result | size |
risch | \(-\frac {\ln \relax (x )}{2 x}+\frac {4}{x}+\frac {524288 \,{\mathrm e}^{-5 \,{\mathrm e}^{x}+5-5 x}}{x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.98, size = 34, normalized size = 0.94 \begin {gather*} -\frac {{\left ({\left (\log \relax (x) + 1\right )} e^{\left (5 \, x\right )} - 1048576 \, e^{\left (-5 \, e^{x} + 5\right )}\right )} e^{\left (-5 \, x\right )}}{2 \, x} + \frac {9}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.48, size = 29, normalized size = 0.81 \begin {gather*} \frac {4}{x}-\frac {\ln \relax (x)}{2\,x}+\frac {524288\,{\mathrm {e}}^{-5\,x}\,{\mathrm {e}}^5\,{\mathrm {e}}^{-5\,{\mathrm {e}}^x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 24, normalized size = 0.67 \begin {gather*} \frac {524288 e^{- 5 x - 5 e^{x} + 5}}{x} - \frac {\log {\relax (x )}}{2 x} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________