Optimal. Leaf size=27 \[ e^{-x} \left (3+e^{\frac {11}{3}+4 (-2+x)^2+2 x+x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 22, normalized size of antiderivative = 0.81, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6742, 2194, 2236} \begin {gather*} e^{5 x^2-15 x+\frac {59}{3}}+3 e^{-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2236
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3 e^{-x}+5 e^{\frac {59}{3}-15 x+5 x^2} (-3+2 x)\right ) \, dx\\ &=-\left (3 \int e^{-x} \, dx\right )+5 \int e^{\frac {59}{3}-15 x+5 x^2} (-3+2 x) \, dx\\ &=3 e^{-x}+e^{\frac {59}{3}-15 x+5 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 22, normalized size = 0.81 \begin {gather*} 3 e^{-x}+e^{\frac {59}{3}-15 x+5 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 18, normalized size = 0.67 \begin {gather*} e^{\left (5 \, x^{2} - 15 \, x + \frac {59}{3}\right )} + 3 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 18, normalized size = 0.67 \begin {gather*} e^{\left (5 \, x^{2} - 15 \, x + \frac {59}{3}\right )} + 3 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 0.70
method | result | size |
default | \(3 \,{\mathrm e}^{-x}+{\mathrm e}^{-15 x +5 x^{2}+\frac {59}{3}}\) | \(19\) |
norman | \(\left (3+{\mathrm e}^{5 x^{2}-14 x +\frac {59}{3}}\right ) {\mathrm e}^{-x}\) | \(19\) |
risch | \(3 \,{\mathrm e}^{-x}+{\mathrm e}^{-15 x +5 x^{2}+\frac {59}{3}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.75, size = 93, normalized size = 3.44 \begin {gather*} \frac {3}{2} i \, \sqrt {5} \sqrt {\pi } \operatorname {erf}\left (i \, \sqrt {5} x - \frac {3}{2} i \, \sqrt {5}\right ) e^{\frac {101}{12}} + \frac {1}{10} \, \sqrt {5} {\left (\frac {15 \, \sqrt {\pi } {\left (2 \, x - 3\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {5} \sqrt {-{\left (2 \, x - 3\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x - 3\right )}^{2}}} + 2 \, \sqrt {5} e^{\left (\frac {5}{4} \, {\left (2 \, x - 3\right )}^{2}\right )}\right )} e^{\frac {101}{12}} + 3 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 20, normalized size = 0.74 \begin {gather*} 3\,{\mathrm {e}}^{-x}+{\mathrm {e}}^{-15\,x}\,{\mathrm {e}}^{59/3}\,{\mathrm {e}}^{5\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 20, normalized size = 0.74 \begin {gather*} e^{- x} e^{5 x^{2} - 14 x + \frac {59}{3}} + 3 e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________