Optimal. Leaf size=26 \[ 1-\frac {3-x-x^2}{5-e+e^{e^x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5+e (-1-2 x)+10 x+e^{e^x} \left (1+2 x+e^x \left (3-x-x^2\right )\right )}{25-10 e+e^2+(10-2 e) e^{e^x}+e^{2 e^x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5+e (-1-2 x)+10 x+e^{e^x} \left (1+2 x+e^x \left (3-x-x^2\right )\right )}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx\\ &=\int \left (\frac {5}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}+\frac {e^{e^x}}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}+\frac {e (-1-2 x)}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}+\frac {10 x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}+\frac {2 e^{e^x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}+\frac {e^{e^x+x} \left (3-x-x^2\right )}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}\right ) \, dx\\ &=2 \int \frac {e^{e^x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+5 \int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+10 \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+e \int \frac {-1-2 x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+\int \frac {e^{e^x}}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+\int \frac {e^{e^x+x} \left (3-x-x^2\right )}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx\\ &=2 \int \frac {e^{e^x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+5 \operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2 x} \, dx,x,e^x\right )+10 \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+e \int \left (-\frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}-\frac {2 x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}\right ) \, dx+\int \left (\frac {3 e^{e^x+x}}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}-\frac {e^{e^x+x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}-\frac {e^{e^x+x} x^2}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2}\right ) \, dx+\operatorname {Subst}\left (\int \frac {e^x}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2 x} \, dx,x,e^x\right )\\ &=-\frac {e^{-x}}{5-e+e^{e^x}}+2 \int \frac {e^{e^x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+3 \int \frac {e^{e^x+x}}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+5 \operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2 x} \, dx,x,e^x\right )+10 \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-e \int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-(2 e) \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\int \frac {e^{e^x+x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\int \frac {e^{e^x+x} x^2}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right ) x^2} \, dx,x,e^x\right )\\ &=-\frac {e^{-x}}{5-e+e^{e^x}}+2 \int \frac {e^{e^x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+3 \operatorname {Subst}\left (\int \frac {e^x}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2} \, dx,x,e^x\right )+5 \operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2 x} \, dx,x,e^x\right )+10 \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-e \operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2 x} \, dx,x,e^x\right )-(2 e) \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\int \frac {e^{e^x+x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\int \frac {e^{e^x+x} x^2}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right ) x^2} \, dx,x,e^x\right )\\ &=-\frac {e^{-x}}{5-e+e^{e^x}}+2 \int \frac {e^{e^x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+3 \operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+x\right )^2} \, dx,x,e^{e^x}\right )+5 \operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2 x} \, dx,x,e^x\right )+10 \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-e \operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2 x} \, dx,x,e^x\right )-(2 e) \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\int \frac {e^{e^x+x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\int \frac {e^{e^x+x} x^2}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right ) x^2} \, dx,x,e^x\right )\\ &=-\frac {3}{5-e+e^{e^x}}-\frac {e^{-x}}{5-e+e^{e^x}}+2 \int \frac {e^{e^x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx+5 \operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2 x} \, dx,x,e^x\right )+10 \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-e \operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right )^2 x} \, dx,x,e^x\right )-(2 e) \int \frac {x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\int \frac {e^{e^x+x} x}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\int \frac {e^{e^x+x} x^2}{\left (5 \left (1-\frac {e}{5}\right )+e^{e^x}\right )^2} \, dx-\operatorname {Subst}\left (\int \frac {1}{\left (5 \left (1-\frac {e}{5}\right )+e^x\right ) x^2} \, dx,x,e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 19, normalized size = 0.73 \begin {gather*} \frac {-3+x+x^2}{5-e+e^{e^x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 19, normalized size = 0.73 \begin {gather*} -\frac {x^{2} + x - 3}{e - e^{\left (e^{x}\right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 19, normalized size = 0.73 \begin {gather*} -\frac {x^{2} + x - 3}{e - e^{\left (e^{x}\right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 20, normalized size = 0.77
method | result | size |
risch | \(-\frac {x^{2}+x -3}{-{\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}-5}\) | \(20\) |
norman | \(\frac {-x^{2}-x +3}{-{\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}-5}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 19, normalized size = 0.73 \begin {gather*} -\frac {x^{2} + x - 3}{e - e^{\left (e^{x}\right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.46, size = 18, normalized size = 0.69 \begin {gather*} \frac {x^2+x-3}{{\mathrm {e}}^{{\mathrm {e}}^x}-\mathrm {e}+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.58 \begin {gather*} \frac {x^{2} + x - 3}{e^{e^{x}} - e + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________