Optimal. Leaf size=27 \[ 4 \left (x+2 (1+x)-\frac {1}{2} x \left (1+\frac {(4+x)^2}{x^2}\right )\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 18, normalized size of antiderivative = 0.67, number of steps used = 6, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {14, 2334} \begin {gather*} -8 \left (\frac {4}{x}-x\right ) \log (x)-8 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8 \left (-4-x+x^2\right )}{x^2}+\frac {8 \left (4+x^2\right ) \log (x)}{x^2}\right ) \, dx\\ &=8 \int \frac {-4-x+x^2}{x^2} \, dx+8 \int \frac {\left (4+x^2\right ) \log (x)}{x^2} \, dx\\ &=-8 \left (\frac {4}{x}-x\right ) \log (x)-8 \int \left (1-\frac {4}{x^2}\right ) \, dx+8 \int \left (1-\frac {4}{x^2}-\frac {1}{x}\right ) \, dx\\ &=-8 \log (x)-8 \left (\frac {4}{x}-x\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 17, normalized size = 0.63 \begin {gather*} -8 \log (x)-\frac {32 \log (x)}{x}+8 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 15, normalized size = 0.56 \begin {gather*} \frac {8 \, {\left (x^{2} - x - 4\right )} \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 16, normalized size = 0.59 \begin {gather*} 8 \, {\left (x - \frac {4}{x}\right )} \log \relax (x) - 8 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 0.67
method | result | size |
default | \(8 x \ln \relax (x )-\frac {32 \ln \relax (x )}{x}-8 \ln \relax (x )\) | \(18\) |
risch | \(\frac {8 \left (x^{2}-4\right ) \ln \relax (x )}{x}-8 \ln \relax (x )\) | \(18\) |
norman | \(\frac {-8 x \ln \relax (x )+8 x^{2} \ln \relax (x )-32 \ln \relax (x )}{x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 17, normalized size = 0.63 \begin {gather*} 8 \, x \log \relax (x) - \frac {32 \, \log \relax (x)}{x} - 8 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.39, size = 15, normalized size = 0.56 \begin {gather*} -\frac {8\,\ln \relax (x)\,\left (-x^2+x+4\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.56 \begin {gather*} - 8 \log {\relax (x )} + \frac {\left (8 x^{2} - 32\right ) \log {\relax (x )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________