Optimal. Leaf size=21 \[ e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} \]
________________________________________________________________________________________
Rubi [F] time = 28.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{\frac {1}{2+3 e^{x^2} x}} \left (2-2 x+e^{x^2} \left (3 x-3 x^2\right )+\left (e^{x^2} \left (3 x^2+6 x^4\right )+e^{x^2} \left (-3 x-6 x^3\right ) \log (x)\right ) \log (x-\log (x))\right )}{-4 x^2-12 e^{x^2} x^3-9 e^{2 x^2} x^4+\left (4 x+12 e^{x^2} x^2+9 e^{2 x^2} x^3\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \left ((-1+x) \left (2+3 e^{x^2} x\right )-3 e^{x^2} x \left (1+2 x^2\right ) (x-\log (x)) \log (x-\log (x))\right )}{x \left (2+3 e^{x^2} x\right )^2} \, dx\\ &=\int \left (\frac {2 e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} \left (1+2 x^2\right ) (x-\log (x))^{\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{x \left (2+3 e^{x^2} x\right )^2}-\frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \left (1-x+x \log (x-\log (x))+2 x^3 \log (x-\log (x))-\log (x) \log (x-\log (x))-2 x^2 \log (x) \log (x-\log (x))\right )}{x \left (2+3 e^{x^2} x\right )}\right ) \, dx\\ &=2 \int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} \left (1+2 x^2\right ) (x-\log (x))^{\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{x \left (2+3 e^{x^2} x\right )^2} \, dx-\int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \left (1-x+x \log (x-\log (x))+2 x^3 \log (x-\log (x))-\log (x) \log (x-\log (x))-2 x^2 \log (x) \log (x-\log (x))\right )}{x \left (2+3 e^{x^2} x\right )} \, dx\\ &=2 \int \left (\frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{x \left (2+3 e^{x^2} x\right )^2}+\frac {2 e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} x (x-\log (x))^{\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{\left (2+3 e^{x^2} x\right )^2}\right ) \, dx-\int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \left (1-x+\left (1+2 x^2\right ) (x-\log (x)) \log (x-\log (x))\right )}{x \left (2+3 e^{x^2} x\right )} \, dx\\ &=2 \int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{x \left (2+3 e^{x^2} x\right )^2} \, dx+4 \int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} x (x-\log (x))^{\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{\left (2+3 e^{x^2} x\right )^2} \, dx-\int \left (-\frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}}}{2+3 e^{x^2} x}+\frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}}}{x \left (2+3 e^{x^2} x\right )}+\frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{2+3 e^{x^2} x}+\frac {2 e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} x^2 (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{2+3 e^{x^2} x}-\frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \log (x) \log (x-\log (x))}{x \left (2+3 e^{x^2} x\right )}-\frac {2 e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} x (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \log (x) \log (x-\log (x))}{2+3 e^{x^2} x}\right ) \, dx\\ &=2 \int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{x \left (2+3 e^{x^2} x\right )^2} \, dx-2 \int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} x^2 (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{2+3 e^{x^2} x} \, dx+2 \int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} x (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \log (x) \log (x-\log (x))}{2+3 e^{x^2} x} \, dx+4 \int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} x (x-\log (x))^{\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{\left (2+3 e^{x^2} x\right )^2} \, dx+\int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}}}{2+3 e^{x^2} x} \, dx-\int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}}}{x \left (2+3 e^{x^2} x\right )} \, dx-\int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \log (x-\log (x))}{2+3 e^{x^2} x} \, dx+\int \frac {e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} (x-\log (x))^{-1+\frac {1}{2+3 e^{x^2} x}} \log (x) \log (x-\log (x))}{x \left (2+3 e^{x^2} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 21, normalized size = 1.00 \begin {gather*} e^{(x-\log (x))^{\frac {1}{2+3 e^{x^2} x}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 19, normalized size = 0.90 \begin {gather*} e^{\left ({\left (x - \log \relax (x)\right )}^{\left (\frac {1}{3 \, x e^{\left (x^{2}\right )} + 2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (3 \, {\left (x^{2} - x\right )} e^{\left (x^{2}\right )} + 3 \, {\left ({\left (2 \, x^{3} + x\right )} e^{\left (x^{2}\right )} \log \relax (x) - {\left (2 \, x^{4} + x^{2}\right )} e^{\left (x^{2}\right )}\right )} \log \left (x - \log \relax (x)\right ) + 2 \, x - 2\right )} {\left (x - \log \relax (x)\right )}^{\left (\frac {1}{3 \, x e^{\left (x^{2}\right )} + 2}\right )} e^{\left ({\left (x - \log \relax (x)\right )}^{\left (\frac {1}{3 \, x e^{\left (x^{2}\right )} + 2}\right )}\right )}}{9 \, x^{4} e^{\left (2 \, x^{2}\right )} + 12 \, x^{3} e^{\left (x^{2}\right )} + 4 \, x^{2} - {\left (9 \, x^{3} e^{\left (2 \, x^{2}\right )} + 12 \, x^{2} e^{\left (x^{2}\right )} + 4 \, x\right )} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 20, normalized size = 0.95
method | result | size |
risch | \({\mathrm e}^{\left (x -\ln \relax (x )\right )^{\frac {1}{3 \,{\mathrm e}^{x^{2}} x +2}}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 19, normalized size = 0.90 \begin {gather*} e^{\left ({\left (x - \log \relax (x)\right )}^{\left (\frac {1}{3 \, x e^{\left (x^{2}\right )} + 2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.90, size = 19, normalized size = 0.90 \begin {gather*} {\mathrm {e}}^{{\left (x-\ln \relax (x)\right )}^{\frac {1}{3\,x\,{\mathrm {e}}^{x^2}+2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________