Optimal. Leaf size=21 \[ 1-\frac {1}{e \log \left (e^{-x} x^{\frac {1}{x}}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1-x^2-\log (x)}{e x^2 \log ^2\left (e^{-x} x^{\frac {1}{x}}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {1-x^2-\log (x)}{x^2 \log ^2\left (e^{-x} x^{\frac {1}{x}}\right )} \, dx}{e}\\ &=\frac {\int \left (-\frac {1}{\log ^2\left (e^{-x} x^{\frac {1}{x}}\right )}+\frac {1}{x^2 \log ^2\left (e^{-x} x^{\frac {1}{x}}\right )}-\frac {\log (x)}{x^2 \log ^2\left (e^{-x} x^{\frac {1}{x}}\right )}\right ) \, dx}{e}\\ &=-\frac {\int \frac {1}{\log ^2\left (e^{-x} x^{\frac {1}{x}}\right )} \, dx}{e}+\frac {\int \frac {1}{x^2 \log ^2\left (e^{-x} x^{\frac {1}{x}}\right )} \, dx}{e}-\frac {\int \frac {\log (x)}{x^2 \log ^2\left (e^{-x} x^{\frac {1}{x}}\right )} \, dx}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 19, normalized size = 0.90 \begin {gather*} -\frac {1}{e \log \left (e^{-x} x^{\frac {1}{x}}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 17, normalized size = 0.81 \begin {gather*} \frac {x}{x^{2} e - e \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 14, normalized size = 0.67 \begin {gather*} \frac {x e^{\left (-1\right )}}{x^{2} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.32, size = 53, normalized size = 2.52
method | result | size |
default | \(\frac {{\mathrm e}^{-1} x}{x^{2}+\left (\ln \left ({\mathrm e}^{x}\right )-x \right ) x -\left (\ln \left ({\mathrm e}^{\frac {\ln \relax (x )}{x}} {\mathrm e}^{-x}\right )-\frac {\ln \relax (x )}{x}+\ln \left ({\mathrm e}^{x}\right )\right ) x -\ln \relax (x )}\) | \(53\) |
risch | \(\frac {2 i {\mathrm e}^{-1}}{\pi \,\mathrm {csgn}\left (i x^{\frac {1}{x}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} x^{\frac {1}{x}}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{\frac {1}{x}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x} x^{\frac {1}{x}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )-\pi \mathrm {csgn}\left (i {\mathrm e}^{-x} x^{\frac {1}{x}}\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{-x} x^{\frac {1}{x}}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )+2 i \ln \left ({\mathrm e}^{x}\right )-2 i \ln \left (x^{\frac {1}{x}}\right )}\) | \(126\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 15, normalized size = 0.71 \begin {gather*} \frac {e^{\left (-1\right )}}{x - \log \left (x^{\left (\frac {1}{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {{\mathrm {e}}^{-1}\,\left (\ln \relax (x)+x^2-1\right )}{x^2\,{\ln \left ({\mathrm {e}}^{-x}\,{\mathrm {e}}^{\frac {\ln \relax (x)}{x}}\right )}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 15, normalized size = 0.71 \begin {gather*} - \frac {x}{- e x^{2} + e \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________