Optimal. Leaf size=36 \[ \frac {5+x^2+\frac {1}{5} (4+x) \log \left (x-\frac {x}{2 \log (5)}\right )}{x (x-\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 3.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25-46 x+6 x^2+\left (4-7 x-x^2\right ) \log \left (\frac {-x+2 x \log (5)}{2 \log (5)}\right )+\log (x) \left (21-x-5 x^2+4 \log \left (\frac {-x+2 x \log (5)}{2 \log (5)}\right )\right )}{5 x^4-10 x^3 \log (x)+5 x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25-46 x+6 x^2-\log (x) \left (-21+x+5 x^2-4 \log \left (x-\frac {x}{\log (25)}\right )\right )-\left (-4+7 x+x^2\right ) \log \left (x-\frac {x}{\log (25)}\right )}{5 x^2 (x-\log (x))^2} \, dx\\ &=\frac {1}{5} \int \frac {25-46 x+6 x^2-\log (x) \left (-21+x+5 x^2-4 \log \left (x-\frac {x}{\log (25)}\right )\right )-\left (-4+7 x+x^2\right ) \log \left (x-\frac {x}{\log (25)}\right )}{x^2 (x-\log (x))^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {6}{(x-\log (x))^2}+\frac {25}{x^2 (x-\log (x))^2}-\frac {46}{x (x-\log (x))^2}-\frac {5 \log (x)}{(x-\log (x))^2}+\frac {21 \log (x)}{x^2 (x-\log (x))^2}-\frac {\log (x)}{x (x-\log (x))^2}+\frac {\left (4-7 x-x^2+4 \log (x)\right ) \log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{x^2 (x-\log (x))^2}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {\log (x)}{x (x-\log (x))^2} \, dx\right )+\frac {1}{5} \int \frac {\left (4-7 x-x^2+4 \log (x)\right ) \log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{x^2 (x-\log (x))^2} \, dx+\frac {6}{5} \int \frac {1}{(x-\log (x))^2} \, dx+\frac {21}{5} \int \frac {\log (x)}{x^2 (x-\log (x))^2} \, dx+5 \int \frac {1}{x^2 (x-\log (x))^2} \, dx-\frac {46}{5} \int \frac {1}{x (x-\log (x))^2} \, dx-\int \frac {\log (x)}{(x-\log (x))^2} \, dx\\ &=-\left (\frac {1}{5} \int \left (\frac {1}{(x-\log (x))^2}-\frac {1}{x (x-\log (x))}\right ) \, dx\right )+\frac {1}{5} \int \left (-\frac {\log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{(x-\log (x))^2}+\frac {4 \log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{x^2 (x-\log (x))^2}-\frac {7 \log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{x (x-\log (x))^2}+\frac {4 \log (x) \log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{x^2 (x-\log (x))^2}\right ) \, dx+\frac {6}{5} \int \frac {1}{(x-\log (x))^2} \, dx+\frac {21}{5} \int \left (\frac {1}{x (x-\log (x))^2}-\frac {1}{x^2 (x-\log (x))}\right ) \, dx+5 \int \frac {1}{x^2 (x-\log (x))^2} \, dx-\frac {46}{5} \int \frac {1}{x (x-\log (x))^2} \, dx-\int \left (\frac {x}{(x-\log (x))^2}+\frac {1}{-x+\log (x)}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {1}{(x-\log (x))^2} \, dx\right )+\frac {1}{5} \int \frac {1}{x (x-\log (x))} \, dx-\frac {1}{5} \int \frac {\log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{(x-\log (x))^2} \, dx+\frac {4}{5} \int \frac {\log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{x^2 (x-\log (x))^2} \, dx+\frac {4}{5} \int \frac {\log (x) \log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{x^2 (x-\log (x))^2} \, dx+\frac {6}{5} \int \frac {1}{(x-\log (x))^2} \, dx-\frac {7}{5} \int \frac {\log \left (x \left (1-\frac {1}{\log (25)}\right )\right )}{x (x-\log (x))^2} \, dx+\frac {21}{5} \int \frac {1}{x (x-\log (x))^2} \, dx-\frac {21}{5} \int \frac {1}{x^2 (x-\log (x))} \, dx+5 \int \frac {1}{x^2 (x-\log (x))^2} \, dx-\frac {46}{5} \int \frac {1}{x (x-\log (x))^2} \, dx-\int \frac {x}{(x-\log (x))^2} \, dx-\int \frac {1}{-x+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 41, normalized size = 1.14 \begin {gather*} -\frac {-25-6 x^2+x \log (x)-(4+x) \log \left (x-\frac {x}{\log (25)}\right )}{5 x (x-\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.81, size = 84, normalized size = 2.33 \begin {gather*} \frac {6 \, x^{2} - x \log \left (\frac {2 \, \log \relax (5)}{2 \, \log \relax (5) - 1}\right ) + 4 \, \log \left (\frac {2 \, x \log \relax (5) - x}{2 \, \log \relax (5)}\right ) + 25}{5 \, {\left (x^{2} - x \log \left (\frac {2 \, x \log \relax (5) - x}{2 \, \log \relax (5)}\right ) - x \log \left (\frac {2 \, \log \relax (5)}{2 \, \log \relax (5) - 1}\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 67, normalized size = 1.86 \begin {gather*} \frac {6 \, x^{2} - x \log \relax (2) + x \log \left (2 \, \log \relax (5) - 1\right ) - x \log \left (\log \relax (5)\right ) + 4 \, x - 4 \, \log \relax (2) + 4 \, \log \left (2 \, \log \relax (5) - 1\right ) - 4 \, \log \left (\log \relax (5)\right ) + 25}{5 \, {\left (x^{2} - x \log \relax (x)\right )}} - \frac {4}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.28, size = 69, normalized size = 1.92
method | result | size |
risch | \(-\frac {4}{5 x}+\frac {50-2 x \ln \left (\ln \relax (5)\right )+2 x \ln \left (2 \ln \relax (5)-1\right )-2 x \ln \relax (2)+12 x^{2}-8 \ln \left (\ln \relax (5)\right )+8 \ln \left (2 \ln \relax (5)-1\right )-8 \ln \relax (2)+8 x}{10 x \left (x -\ln \relax (x )\right )}\) | \(69\) |
default | \(\frac {25+6 x \ln \relax (x )+4 \ln \relax (x )}{5 x \left (x -\ln \relax (x )\right )}+\frac {x \ln \left (2 \ln \relax (5)-1\right )+4 \ln \left (2 \ln \relax (5)-1\right )}{5 x \left (x -\ln \relax (x )\right )}+\frac {-x \ln \relax (2)-4 \ln \relax (2)}{5 x \left (x -\ln \relax (x )\right )}+\frac {-x \ln \left (\ln \relax (5)\right )-4 \ln \left (\ln \relax (5)\right )}{5 x \left (x -\ln \relax (x )\right )}\) | \(106\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 60, normalized size = 1.67 \begin {gather*} \frac {6 \, x^{2} - x {\left (\log \relax (2) - \log \left (2 \, \log \relax (5) - 1\right ) + \log \left (\log \relax (5)\right )\right )} - 4 \, \log \relax (2) + 4 \, \log \relax (x) + 4 \, \log \left (2 \, \log \relax (5) - 1\right ) - 4 \, \log \left (\log \relax (5)\right ) + 25}{5 \, {\left (x^{2} - x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.61, size = 49, normalized size = 1.36 \begin {gather*} \frac {4\,\ln \left (\ln \relax (5)-\frac {1}{2}\right )-4\,\ln \left (\ln \relax (5)\right )+4\,\ln \relax (x)+x\,\ln \left (\ln \relax (5)-\frac {1}{2}\right )-x\,\ln \left (\ln \relax (5)\right )+6\,x^2+25}{5\,x\,\left (x-\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 70, normalized size = 1.94 \begin {gather*} \frac {- 6 x^{2} - 4 x - x \log {\left (-1 + 2 \log {\relax (5 )} \right )} + x \log {\left (\log {\relax (5 )} \right )} + x \log {\relax (2 )} - 25 - 4 \log {\left (-1 + 2 \log {\relax (5 )} \right )} + 4 \log {\left (\log {\relax (5 )} \right )} + 4 \log {\relax (2 )}}{- 5 x^{2} + 5 x \log {\relax (x )}} - \frac {4}{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________